
Documentation of the Implementation of the

Milca English Resource Grammar

in the Trale system

Kordula De Kuthy
kdk@ling.osu.edu

Vanessa Metcalf
vmetcalf@ling.osu.edu

Detmar Meurers
dm@ling.osu.edu

Revision : 1.31

Contents

1 Introduction 7

2 From ERG to MERGE 8
2.1 Some general issues . 8

2.1.1 Modularity of grammatical constraints in HPSG-based grammar im-
plementations . 8
2.1.1.1 Introduction . 8
2.1.1.2 Example 1: Unbounded dependencies 9
2.1.1.3 Example 2: Optional complementation 12

Capturing the missed generalization 15
2.1.1.4 Summary . 16

2.1.2 Towards meaningful criteria for data structure and grammar design in
HPSG-based implementation efforts 17
2.1.2.1 Introduction . 17
2.1.2.2 Types and what they are used for 18
2.1.2.3 Types in the English Resource Grammar 18
2.1.2.4 An experiment reducing the number of types to what is em-

pirically required . 19
2.1.2.5 Summary . 19

2.2 Notes on correspondences and differences . 21
2.2.1 The signature . 21

2.2.1.1 Basic types and appropriateness conditions 21
2.2.1.2 Lexical types . 22
2.2.1.3 Phrasal types . 22
2.2.1.4 Lists . 25

2.2.2 The theory . 26
2.2.2.1 The lexicon . 26
2.2.2.2 The phrase structure rules 28
2.2.2.3 The lexical rules . 31
2.2.2.4 The principles . 33

3 Coverage of the grammar 35
3.1 Basic declarative sentences . 35
3.2 Interrogative sentences . 39

1

CONTENTS 2

3.3 Imperative sentences . 41
3.4 Noun phrases . 41

3.4.1 Pronouns . 41
3.4.2 Head-Specifier constructions . 42
3.4.3 Modification . 42
3.4.4 Other kinds of noun phrases . 43

4 Description of the components of the grammar 45
4.1 The Signature . 45

4.1.1 Signs . 45
4.1.2 Synsem objects . 47
4.1.3 Local objects . 47
4.1.4 Cat objects . 49
4.1.5 The content . 49
4.1.6 Head objects . 49
4.1.7 Lists . 49

4.2 Phrase Structure Rules . 50
4.2.1 Phrasal types and phrase structure rules 50
4.2.2 General phrasal macros . 51
4.2.3 Head-subject rule . 52
4.2.4 Head-complement rule . 55
4.2.5 Optional complement rules . 56

4.2.5.1 Head-optional-complement rule 56
4.2.5.2 Noun-optional-complement rule 56

4.2.6 Head-marker rules . 56
4.2.6.1 Nominal head-marker rule 59

4.2.7 Head-specifier rule . 59
4.2.8 Modification . 59

Adjunct-head phrases . 60
Intersective adjunct-head phrases 60

Head-adjunct phrases . 60
4.2.8.1 Intersective adjunct-noun rule 60
4.2.8.2 Noun-adjunct rules . 60

Reduced relative noun-adjunct rules 60
Nontemporal reduced relative noun-adjunct rule 61
Temporal reduced relative noun-adjunct rule 61

Relative clause noun-adjunct rule 61
4.2.9 Filler-head rules . 61

4.2.9.1 Filler-head relative rule . 61
4.2.10 Non-wh-relative rules . 61
4.2.11 Extracted argument rules . 62

4.2.11.1 Extracted complement rule 62
4.2.11.2 Extracted subject rules . 62

4.2.12 Extracted adjunct rules . 62
4.2.13 Coordination rules . 62

Event coordination rules . 63

CONTENTS 3

Nominal coordination rules 63
4.2.14 Special NP rules . 63

4.2.14.1 Specifier-less noun phrases 63
Proper noun phrase rule . 63
Bare noun phrase rule . 64
Bare verbal gerund phrase rule 64

4.2.14.2 Compound noun phrases . 64
Noun-noun compound rule 64
NP-noun compound rule . 64
NP-name compound rule . 64

4.2.14.3 Temporal modifier rule . 65
4.2.14.4 Measure NP rule . 65
4.2.14.5 Free relative rules . 66

Infinitive free relative rule . 66
Finite free relative rule . 66

4.3 Lexical Entries . 66
4.3.1 Common nouns . 66

Intransitive nouns (@n intr le) 66
Nouns taking PP complements (@n ppcomp le) 67
Plural nouns taking PP complements (@n plur ppcomp le) . 67
Nouns taking PP[of] complements (@n ppof le) 67
Nouns taking CP complements (@n cpcomp fin le) 67
Mass nouns (@n mass le) . 67

4.3.2 Time and date expressions . 68
Hour nouns (@n hour le) . 68
Temporal PP-complement nouns (@n temp ppcomp le) . . . 68
Definite partitive day (@n def day part le) 69
Day of week nouns (@n day of week le) 69
Day of month nouns (@n day of month le) 69
Cardinal day of month nouns (@n day of month card le) . . 70
Month nouns (@n month le) 70
Month-year nouns (@n month year le) 70
Year nouns (@n year le) . 71

4.3.3 Proper nouns (@n proper le) . 71
4.3.4 Partitive nouns . 71

PP[of] no-agreement partitives (@n part ppof noagr le) . . . 72
PP[of] agreement partitives (@n part ppof agr le) 72
NP-complement agreement partitives (@n part npcomp agr le) 72
No-complement partitive nouns (@n part nocomp le) 72

4.3.5 Pronouns . 72
Personal pronouns (@n pers pro le) 73
Singular they (@n pers pro noagr le) 73
Expletive pronouns . 73

Expletive it (@n expl it le) 73
Expletive there (@n expl there le) 73

Possessive pronouns (@n poss pro le) 74

CONTENTS 4

Deictic pronouns (@n deictic pro le) 74
Generic pronouns (@n generic pro le) 74
Reflexive pronouns (@n refl pro le) 75
Wh-pronouns (@n wh pro le) 75
Free relative pronouns (@n freerel pro le) 75
Relative pronouns (@n rel pro le) 75
Non-wh relative pronoun that (@n rel pro nonwh le) 76

4.3.6 Adverbial nouns . 76
there (@n adv le) . 76
Adverbial wh-nouns (@n wh adv le) 76
Adverbial free relative pronouns (@n freerel pro adv le) . . . 76

4.3.7 Determiners (@basic det synsem) . 76
Non-partitive determiners . 77

(Ordinary) determiners (@det le) 77
Singular mass determiners (@det sm le) 77
Singular determiners (@det sg le) 78
Singular no-modifier determiners (@det sg nomod le) . . 78
Plural determiners (@det pl le) 78
Possessive determiners (@det poss le) 78

Partitive determiners . 78
(Ordinary) partitive determiners (@det part le) 79
Singular partitive determiners (@det part sg le) 79
Plural partitive determiners (@det part pl le) 79
Plural-mass partitive determiners (@det part pl mass le) 79
The determiner one (@det part one le) 79

Wh-determiners . 79
The determiner what (@det wh le) 79
The determiner which (@det part unsp le) 80
The determiner how many (@det part pl wh le many) . 80
The determiner whichever (@n freerel part le) 80
The free-relative determiner what (@det freerel le) . . . 80
The possessive relative determiner whose (@det rel poss le) 80

4.3.8 Prepositions . 81
Regular prepositions (@p reg le) 81
(Ordinary) prepositions (@p le) 81
No-specifier prepositions (@p nospec le) 81
No-specifier no-gap prepositions (@p nospec nogap le) 82
Idiomatic no-modifier prepositions (@p idiom nomod le) . . 82
Comparative than (@p compar than le) 82
Temporal prepositions (@p temp le) 82
The preposition a (@p nbar comp nmod le) 83
No-noun modifying prepositions (@p no n mod le) 83
Subordinating conjunctions (@p subconj le) 83
Predicative subordinating conjunctions 83
Infinitive subordinating conjunctions (@p subconj inf le) . . 84
Indicative if (@p subconj if indic le) 84

CONTENTS 5

CP-complement prepositions (@p cp le) 84
PrdP-complement prepositions (@p prdp le) 85
Phrasal prepositions . 85

Ordinary phrasal prepositions (@pp le) 85
Relative prepositions (@pp rel le) 85

Wh-prepositions (@pp wh le) 85
4.3.9 Adjectives (@basic adj synsem lex or phrase) 86

4.3.9.1 Modifying adjectives . 86
Intransitive adjectives (@adj intrans le) 86
Comparative adjectives (@adj comp le) 86
Superlative adjectives (@adj superl le) 87
The adjectives more and less (@adj more less le) 87
The adjectives most and least (@adj most least le) 87
Ordinal adjectives (@adj bare unspecified ord le) 87
Cardinal adjectives (@adj bare unspecified card le) 88

4.3.9.2 Non-modifying adjectives . 88
CP[that] adjectives (@adj reg atrans that cp le) 88
Wh-adjectives (@adj wh le) 88

4.3.10 Degree specifiers (@adv degree spec le) 88
Titles (@n title le) . 89
Post titles (@n post title le) 89

4.3.11 Conjunctions (@conj word) . 89
Complex conjunctions (@conj complex le) 90
Atomic conjunctions (@conj atomic le) 90

4.4 Lexical Rules . 90
4.4.1 Inflectional Lexical Rules . 90

Singular nouns . 90
Mass nouns . 90
Plural nouns . 90

4.4.2 Derivational lexical rules . 90
4.4.2.1 Partitive lexical rules . 90

part nocomp constr . 91
part ppof agr constr . 91
part ppof noagr constr . 91
partitive num . 91

4.4.2.2 month det . 91
4.4.2.3 dofm yofc . 91

4.5 General Principles . 92
4.5.1 The Head Feature Principle . 92
4.5.2 Slash Amalgamation . 92
4.5.3 Nonlocal Feature Inheritance . 93

CONTENTS 6

5 Phenomena and how they are licensed 94
5.1 The nominal domain . 94

5.1.1 Simple noun phrases . 94
5.1.2 Prenominal modification . 95
5.1.3 Degree specifiers of determiners, adjectives, and other specifiers 96
5.1.4 Possessives . 96
5.1.5 Special kinds of noun phrases . 96

5.1.5.1 Pronominal expressions . 96
Referring pronominals . 96
Expletives . 97

5.1.5.2 Names . 97
5.1.5.3 Date expressions . 97
5.1.5.4 Temporal modifying NPs . 98
5.1.5.5 Partitive constructions . 99
5.1.5.6 Compound nouns . 100
5.1.5.7 Free relatives . 101

5.1.6 Comparative and superlative expressions 101
5.1.6.1 Prenominal modifiers . 101
5.1.6.2 Predicative adjective phrases 101
5.1.6.3 Comparative NPs . 102

5.1.7 Postnominal modification . 102
Example structures . 104
Licensing postnominal modification 104
Modification by a reduced relative 106
Modification by a relative clause 106

5.2 The verbal domain . 107
5.2.1 Complementation . 107

5.2.1.1 Optional Complements . 107
5.2.2 Modification . 107

5.2.2.1 Relative Clauses . 107
Relative pronouns and pied-piping 108

5.2.3 Extraction . 108
5.3 Coordination . 111

5.3.1 Coordination of nouns and NPs . 113

Chapter 1

Introduction

The Milca English Resource Grammar (merge) is an HPSG-based grammar for English. It
is implemented in the Trale system with the intention of exploring and documenting which
expressive means are useful for writing HPSG-based grammars. The grammar is modeled on
the English Resource Grammar (erg, version 2002-01-16) (Flickinger et al. 2000) which has
been implemented in the LKB system (Copestake, 2002). We are grateful to Dan Flickinger
and his colleagues on the German Verbmobil project and member institutions of the LinGO
consortium (http://lingo.stanford.edu/) for producing the erg and for making it freely
available to the research community. We hope that our work exploring potential alternatives
for encoding such a grammar will further progress in the field of HPSG-based grammar
implementation and the computational platforms provided to support them.

The discussion in this document focuses on the issues that are related to the implemen-
tation of large HPSG-based grammars and, more specifically, the merge. A discussion of
the general aspects of the logical architecture, the formalization, and the implementation of
Head-Driven Phrase Structure Grammars can be found in Meurers (1994).

The general strategy for the implementation of the merge in Trale was to stay as close
as possible to the erg in order to facilitate a comparison of the expressive devices used in
specific areas. In the chapter 2 we discuss some of these specific areas: In section 2.1.1 we
discuss the modularity of grammatical constraints in HPSG-based grammar implementations
and how it can be supported by a grammar implementation platform. In section 2.1.2 we
turn to the use of types in HPSG-based implementations and argue that a system should
clearly distinguish between two distinct notions: the use of types as introducing linguistically
necessary distinctions and the use of macros as abbreviations for commonly used specifica-
tions. Section 2.2 then discusses correspondences and differences in the implementation of
the merge compared to the erg.

Turning to the documentation of the merge as such, in chapter 3 we start with a listing
of examples for the phenomena covered by the grammar. Chapter 4 discusses the different
components in the grammar specifications. On this basis, chapter 5 then explains how the
different phenomena are licensed by the grammar.

7

http://lingo.stanford.edu/

Chapter 2

From ERG to MERGE

2.1 Some general issues

2.1.1 Modularity of grammatical constraints in HPSG-based gram-
mar implementations1

2.1.1.1 Introduction

The organization of a grammar in layered, reusable structures is a key methodological issue for
sustainable grammar implementation efforts. This insight is reminiscent of the development
in computer science, where as a result of the rise of software engineering in the 70s (Naur and
Randell, 1968; Parnas, 1975) modular software written in high-level programming languages
replaced the low-level coding of the early years. The abstraction and data encapsulation
possibilities of high-level languages are viewed as essential to obtain reliable, maintainable
and reusable software modules. As a result there is general agreement that efficiency should
not be sought by coding at a low level but by intelligent compilation from such a high-level
language to executable code.

In this paper, we want to contribute to a discussion of the expressive means of grammar
implementation systems and how they can support the formulation of modular grammatical
constraints that are reusable across languages. More specifically, we want to investigate the
usefulness of recursive relational constraints for the implementation of HPSG-based gram-
mars under this perspective. We base our discussion on two examples, the encoding of the
treatment of unbounded dependencies and the analysis of optional complements, two key
components of the English Resource Grammar (ERG, Flickinger et al., 2000) as the largest
HPSG-based grammar for English currently available. We contrast the ERG encoding of
these two issues with encodings that make use of recursive relations, such as the append or
union relations frequently used in HPSG linguistics.2

1The material of this section is based on our publication by the same name in the Proceedings of the
ESSLLI ’03 workshop “Ideas and Strategies for Multilingual Grammar Development”. Vienna, Austria.

2Relational goals in HPSG linguistics are often written in functional notation, e.g., 1 ⊕ 2 instead of
append(1 , 2 , 3).

8

CHAPTER 2. FROM ERG TO MERGE 9

2.1.1.2 Example 1: Unbounded dependencies

The English Resource Grammar (ERG) developed by the LinGO3 project is a freely available
broad-coverage, HPSG-based grammar of English, which is implemented in the LKB system
(Copestake and Flickinger, 2000). The grammar contains a wealth of analyses of English
phenomena, including a coverage of unbounded dependencies that is based on the proposal
in Bouma et al. (2001) (henceforth: BMS). This proposal is particularly interesting under
an implementation perspective since it replaces the need for computationally problematic
empty elements with a lexical specification of ordinary, visible elements. The so-called slash
amalgamation constraint ensuring this lexical specification is shown figure 2.1.

word ⇒

loc

[
cat

[
deps 〈

[
slash 1

]
, . . . ,

[
slash n

]
〉

bind 0

]]
slash

(
1 ∪ . . .∪ n

)
− 0

Figure 2.1: slash amalgamation as defined in Bouma et al. (2001, p. 20)

This constraint on words collects the information about dependents of that word which are
not locally realized. More concretely, the slash value of each of the dependents on the
deps list is collected and the slash value of a word is specified to be the union of the
collected values (minus the value of bind, which in the following is ignored). To express
this generalization, the slash amalgamation principle of BMS in figure 2.1 makes use of the
recursive relations set union (∪) and set complement (−), as well as the use of 1 , . . . , n to
express a relation accessing the slash value of every element of the deps list to be unioned
into the slash value of the word.

In an implementation platform that supports relational constraints, the slash amalgama-
tion principle can be directly expressed. For example, figure 2.2 shows how one can encode
slash amalgamation in the Trale system (Meurers et al., 2002), an extension of the ALE
parsing and generation system (Carpenter and Penn, 1996).4

word *> synsem:(loc:cat:deps:Deps,

nonloc:slash:Slash)

goal collect_slashes(Deps,Slash).

Figure 2.2: slash amalgamation in Trale

The relational goal collect slashes collects the slash values of all elements of the deps
list. Its definition in figure 2.3 on the following page specifies that it applies when the list
of dependents Deps is known to be either an empty or a non-empty list. In the latter case,
coll slashes aux peels off one dependent at a time and unions each Slash value to obtain
the list of all slashes.5

3Cf., http://lingo.stanford.edu/
4This is essentially the encoding used in the German HPSG-based grammar (Meur-

ers and De Kuthy, 2001) developed in Trale as part of the SFB 340 Project B8
(http://www.sfs.uni-tuebingen.de/hpsg/archive/sfb340-b4-b8/index_engl.html).

5Note that one could also use a difference list encoding for slash sets in order to avoid this call to the
relation union, an issue which is orthogonal to the one we focus on in this paper.

http://www.sfs.uni-tuebingen.de/hpsg/archive/sfb340-b4-b8/index_engl.html

CHAPTER 2. FROM ERG TO MERGE 10

collect_slashes(Deps,Slash) if

when(Deps = (e_list;ne_list),

coll_slashes_aux(Deps,Slash)).

coll_slashes_aux([],[]) if true.

coll_slashes_aux([(nonloc:slash:Slash)

|Deps], AllSlash) if

collect_slashes(Deps,DepsSlash),

union(Slash,DepsSlash,AllSlash).

Figure 2.3: Definition of collect slashes

Since the ERG is implemented in the LKB system, which does not support relational goals,
the slash amalgamation approach of BMS is encoded by unfolding the relation between the
slash of a word and that of its dependents into all of the different ways in which a word in
this grammar can select arguments. To be able to do this, one needs to know more about the
grammar to be able to determine the maximal number of elements for which the recursive
relation needs to be unfolded. For the ERG, the maximal number of arguments of a word is
four, so that slash amalgamation for arguments can be encoded by five type constraints as
shown in figure 2.4 on the next page.

Let us take a close look at what distinguishes the two encodings in terms of generality,
modularity, and transparency:

First, the principle in figure 2.1 on the preceding page is more modular since it encodes
the collection of the slash value from any number of dependents without requiring additional
information about the specifics of the grammar. Unfolding the principle into a fixed number
of disjunctive cases, on the other hand, is dependent on such additional knowledge, namely
the maximal number of elements that slash needs to be amalgamated from, which in the
ERG happens to be four.

Second, the fact that the principle of BMS can collect the slash of any number of elements
also means that it is more general than the ERG encoding. Even with specific knowledge
about the grammar, it is impossible to capture the full generality of the BMS proposal
in the ERG since the key idea of that paper is to generalize over adjunct and argument
extraction—but the number of adjuncts is not lexically bounded, so that it is impossible to
unfold all potential instances of amalgamation. It is therefore not surprising that in the ERG
only argument extraction is handled via slash amalgamation, not dependent extraction in
general, as proposed by BMS.7

Third, a lack of generality and modularity of the ERG encoding derives from the fact
that the ERG encoding employs five independent constraints having five different types as
antecedent. So while the principle of figure 2.1 on the page before applies to all words
and thus is dependent only on what the linguist or grammar writer decided to classify as a
word in the grammar, the ERG unfolding of slash amalgamation depends on five separate
classifications, one for each type of antecedent. As before, this is a loss of modularity since an

7In languages exhibiting coherence or restructuring phenomena (e.g., German, Dutch, and the Romance
languages), even the number of arguments is not bounded in the lexicon since under the normal HPSG
analyses of those languages, certain verbs are specified to attract the arguments of their complement.

CHAPTER 2. FROM ERG TO MERGE 11

basic_zero_arg := lex_synsem &

[LOCAL.ARG-S < >,

NON-LOCAL [SLASH 0-dlist]].

basic_one_arg := canonical_synsem &

[LOCAL.ARG-S < [NON-LOCAL [SLASH #slash]] >,

NON-LOCAL [SLASH #slash]].

basic_two_arg := lex_synsem &

[LOCAL.ARG-S < [NON-LOCAL [SLASH [LIST #smiddle,

LAST #slast]]],

[NON-LOCAL [SLASH [LIST #sfirst,

LAST #smiddle]]] >,

NON-LOCAL [SLASH [LIST #sfirst,

LAST #slast]]].

basic_three_arg := lex_synsem &

[LOCAL [ARG-S < [NON-LOCAL [SLASH [LIST #smiddle2,

LAST #slast]]],

[NON-LOCAL [SLASH [LIST #sfirst,

LAST #smiddle1]]],

[NON-LOCAL [SLASH [LIST #smiddle1,

LAST #smiddle2]]] >],

NON-LOCAL [SLASH [LIST #sfirst,

LAST #slast]]].

basic_four_arg := lex_synsem &

[LOCAL [ARG-S < [NON-LOCAL [SLASH [LIST #smiddle3,

LAST #slast]]],

[NON-LOCAL [SLASH [LIST #sfirst,

LAST #smiddle1]]],

[NON-LOCAL [SLASH [LIST #smiddle1,

LAST #smiddle2]]],

[NON-LOCAL [SLASH [LIST #smiddle2,

LAST #smiddle3]]] >],

NON-LOCAL [SLASH [LIST #sfirst,

LAST #slast]]].

Figure 2.4: The five type constraint encoding slash amalgamation in the ERG6

understanding of the ERG encoding of slash amalgamation is dependent on knowing where
five types are used in the specification of lexical entries in the grammar, whereas the original
principle of figure 2.1 on page 9 only requires knowledge of where a single type, word, is used
in the specification of lexical entries in the grammar.

Fourth, a further lack of generality and transparency of the ERG encoding is caused by the
7The constraints are shown without the specification of the que and rel attributes. These are amalga-

mated as well, so that the actual ERG constraints are three times as large as the ones shown in figure 2.4.

CHAPTER 2. FROM ERG TO MERGE 12

fact that the ERG encoding imposes five type constraints having five different consequents,
whereas a recursive encoding consists of a base clause and a recursive clause characterizing
what is the case at n + 1 based on knowledge of the state of affairs at n. The recursive case
thus is a generalization over all cases, starting from the base case; with a recursive definition
it is impossible for e.g., the fourth case to differ from the third case in any other way than
exactly the way in which the third case differed from the second case. In contrast, there is no
such generality across cases for five separately written down constraints, such as in the ERG
encoding of slash amalgamation in figure 2.4 on the preceding page. How transparent would
it be if, e.g., a couple of variable names in basic tree arg would be changed such that the
slash value of one of the three arguments is not collected? Interestingly, closer inspection of
the ERG encoding reveals just such a non-generality across cases: the basic one arg case
happens to be special in that it requires the word from which it collects slashes to have
a canonical synsem, whereas all other cases require a lex synsem. There thus is a clear
contrast to the slash amalgamation principle of BMS which generalizes over all cases. This
generalization is not expressed in the ERG encoding; instead, one needs to look at every one
of the five constraints separately to know what exactly happens to be encoded in each one.

To address the gap in generality, modularity and transparency between the linguistic
principle of BMS and the ERG encoding of it, the recursive relations used in the linguistic
principle need to be supported by the grammar implementation system. To address all
of the issues we raised above, including the unbounded number of potential dependents,
recursive relations need to be fully supported by the system in the sense that the runtime
environment must support the execution of recursive relations. The overhead associated with
such a runtime support of relations can often be avoided though by unfolding and inlining
the relation calls at compile time. This corresponds to inlining of functions and unfolding
of loops as a standard option of compilers for many programming languages. The use of
slash amalgamation made in the ERG is an instance where unfolding of the relation at
compile-time is possible (unless slash amalgamation is also applied to adjuncts). Note that
as long as the grammar is specified with a relation explicitly encoding the generalization
to be captured, most of the shortcomings of the ERG encoding we discussed above do not
apply, independent of whether the relational constraints are ensured by unfolding them at
compile-time or by executing them at run-time.

2.1.1.3 Example 2: Optional complementation

The second example we want to look at in this paper concerns the analysis of optional
complements in the ERG, which is also discussed in Flickinger (2000).8 The empirical issue
of verbs with optional complements is illustrated by the sentences in (1), which are licensed
by the ERG.

(1) a. Kim bet Tom five dollars that they hired Cindy.
b. Kim bet Tom five dollars.
c. Kim bet Tom that they hired Cindy.
d. Kim bet five dollars that they hired Cindy.

8Whether the treatment of optional complements proposed in Flickinger (2000) is the best analysis for
this phenomenon is an orthogonal issue. Our focus is on how the proposed analysis is reflected in the
implementation.

CHAPTER 2. FROM ERG TO MERGE 13

e. Kim bet five dollars.
f. Kim bet that they hired Cindy.
g. Kim bet Tom.
h. Kim bet.

In sentence (1a), the verb bet takes a subject Kim and three complements, the NPs
Tom and five dollars, as well as the sentential complement that they hired Cindy. The other
sentences in (1) exemplify that each of those three complements is optional.

The brute-force method for licensing these structures would be to posit eight independent
lexical entries for bet, one for each of the environments exemplified above. But this would
miss the generalization that bet has three complements, each of which can be realized or not.
As discussed by Flickinger (2000), the ERG takes this generalization into account and posits
only the single lexical entry shown in figure 2.5.9

non derived word
phon 〈bet〉

s

canonical synsem

l|c

head verb

val

comps 〈

synsem

l|c|h
[
nominal

case acc

]
opt plus

 ,

synsem

l|c|h
[
nominal

case acc

]
opt plus

 ,

synsem

l|c|h
[
verbal

vform fin

]
opt plus

〉

subj 〈
[
synsem

l|c|h nominal

]
〉

Figure 2.5: Lexical entry for bet

The key aspect here is the specification of the complement requirements on the comps
list. The list contains three elements, each of which is marked as optional with the help of
an attribute opt(ional) appropriate for synsem objects.

In figure 2.6 on the following page we see the structure that is licensed for a sentence in
which none of the optional complements are realized, i.e., sentence (1h). The entry of bet
can construct as the head daughter of such a head subject phrase even though it has not yet
realized its complements. This is possible since, different from the traditional HPSG analysis
(Pollard and Sag, 1994), the head daughter is not required to be saturated, i.e., have a comps
value of type e list. Instead, a sign is also understood to be saturated for complements if it
has only optional complement requirements left.

Adding the head-complement phrase of the ERG to the picture, one can also license
(1b) and (1g), which are sentences in which one or two complements are realized and the
other complements, which are more oblique than the ones that are realized, are missing.10

Figure 2.7 on the next page shows the relevant aspects of the definition of head-complement
phrases in the ERG. Note that it is always the first element of the comps list that is realized
as the non head dtr of such a phrase.

9Here and in the following figures, only the specifications relevant to the issue of optionality are shown.
For space reasons, attributes are sometimes abbreviated by their first letter.

10The comps is ordered by obliqueness, with the least oblique complement being the first element of the
list.

CHAPTER 2. FROM ERG TO MERGE 14

[
phon <kim>

synsem 1

]

phon <bet>

s

canonical synsem

l|c|v

comps

〈

unexpressed

l|c|h
[
nominal

case acc

]
opt plus

 ,

unexpressed

l|c|h
[
nominal

case acc

]
opt plus

 ,

unexpressed

l|c|h
[
verbal

vform fin

]
opt plus

〉

subj
〈

1
〉

s h

head subj phrase

synsem

[
canonical synsem

local

[
cat

[
val

[
comps 〈〉

]]]]

Figure 2.6: A sentence with three unrealized complements

head comp phrase →

synsem

[
canonical synsem

local|cat|val|comps 2

]

head dtr|synsem

[
canonical synsem

local|cat|val|comps 〈 1 | 2 〉

]
non head dtr|synsem 1 canonical synsem

Figure 2.7: The realization of comps requirements in the head-complement rule of the ERG

Figure 2.8 on the following page shows the structure that the ERG assigns to the sen-
tence (1g). The lower tree is an instance of a head comp phrase, in which the first subcate-
gorization requirement on comps, namely the NP Tom bearing the tag 2 , is realized. The
head subject phrase on top is licensed just as in the previous example, marking the remaining
optional elements on the comps list of the head daughter bet Tom as unexpressed.

Since the head comp phrase in the ERG always realizes the first element of the comps list,
a problem arises if one wants to license a sentence in which the least oblique complement,
i.e., the first element on the comps list is optional and not realized. Note that this is
not an accidental oversight in the formulation of the rule licensing head comp phrases in
the ERG; rather it is a consequence of the fact that the LKB system does not support
relational goals as attachment to phrase structure rules. We will see in the next section
that an implementation platform that includes such relational goals can express the relevant
generalization, namely that the head comp phrase realizes the first requirement on comps
which is not marked as unrealized optional element. In the ERG as implemented in the LKB
system, the problem is addressed by introducing additional types of phrases which eliminate
the unrealized optional subcategorization requirements from the front of the comps list in
order to bring the requirement intended to be realized to the first position of the comps
list. For this purpose, in addition to the ordinary head comp phrases, the ERG needs two
additional rules: the head opt comp phrases which eliminates one optional complement from
the front of the comps list, and the head opt two comp phrases which eliminate first two
complement requirements from the comps list. Further additional phrases would be needed

CHAPTER 2. FROM ERG TO MERGE 15

[
phon <kim>

synsem 1

]

phon <bet>

s

canonical synsem

l|c|v

comps

〈
2 ,

unexpressed

l|c|h
[
nominal

case acc

]
opt plus

 ,

unexpressed

l|c|h
[
verbal

vform fin

]
opt plus

〉

subj
〈

1
〉

phon <Tom>

s 2

canonical synsem

l|c|h
[
nominal

case acc

]
opt plus

h c

head comp phrase

synsem

canonical synsem

l|c|v

comps

〈

unexpressed

l|c|h
[
nominal

case acc

]
opt plus

 ,

unexpressed

l|c|h
[
verbal

vform fin

]
opt plus

〉

subj
〈

1
〉

s h

head subj phrase

synsem

[
canonical synsem

local

[
cat

[
val

[
comps 〈〉

]]]]

Figure 2.8: A sentence in which the two most oblique complements are not realized

if the grammar had comps lists longer than three.
Figure 2.9 on the next page illustrates the structure licensed for sentence (1e), in which

only the second most oblique complement is realized. The unary structure at the bottom of
the tree is an instance of the additional head opt comp phrase, whose purpose is the elimi-
nation of the first complement requirement, an unexpressed optional object NP, in order to
bring the requirement 2 to the front of the comps list. That complement (five dollars) is
then realized in the head comp phrase dominating the head opt comp phrase.

Capturing the missed generalization We saw above that the ERG analysis of optional
complements requires three different head-complement rules since in the LKB system there
is no way to express the relevant generalization that one wants to realize the first element on
the comps list that is not an unrealized optional argument.

The revised head complement rule in figure 2.10 on page 17 shows how the intended
generalization can be expressed using an append relation (⊕) to state that the element 1

to be realized can be preceded by an o list, the type used in the ERG to refer to a list of
unrealized optional elements. In a grammar including this revised head complement phrase
instead of the original one from the ERG we saw in figure 2.7 on the page before, the types and
definitions for head opt comp phrases and head opt two comp phrases are no longer needed.
Interestingly, the LKB encoding of the ERG using a head complement phrase plus the two
‘auxiliary’ phrase types used to unearth the first complement requirement to be realized can
be seen as the result of unfolding the first three calls to the append (⊕) relation in the revised
head complement phrase defined in figure 2.10 on page 17, i.e., the LKB encoding can result

CHAPTER 2. FROM ERG TO MERGE 16

[
phon <kim>

synsem 1

]

phon <bet>

s

canonical synsem

l|c|v

comps

〈

unexpressed

l|c|h
[
nominal

case acc

]
opt plus

 , 2

canonical synsem

l|c|h
[
nominal

case acc

]
opt plus

 ,

unexpressed

l|c|h
[
verbal

vform fin

]
opt plus

〉

subj
〈

1
〉

h

head opt comp phrase

synsem

canonical synsem

l|c|v

comps

〈
2

canonical synsem

l|c|h
[
nominal

case acc

]
opt plus

 ,

unexpressed

l|c|h
[
verbal

vform fin

]
opt plus

〉

subj
〈

1
〉

[
phon <five dollars>

s 2

]h c

head comp phrase

synsem

canonical synsem

l|c|v

comps

〈

unexpressed

l|c|h
[
verbal

vform fin

]
opt plus

〉

subj
〈

1
〉

s h

head subj phrase

synsem

[
canonical synsem

local

[
cat

[
val

[
comps 〈〉

]]]]

Figure 2.9: The ERG analysis of a sentence in which only the second most-oblique object is
realized

from a compilation step taking the more general encoding as its input. This means that the
issue of enabling the grammar writer to express the full generalization in the grammar as
shown by the revised encoding is independent of the as yet unresolved question of the relative
efficiency of parsing systems with and without runtime support for relational goals.

2.1.1.4 Summary

In this paper we discussed the use of relational constraints in the implementation of HPSG-
based grammar in pursuit of a modular and reusable grammar encoding. We based the
discussion on two examples from the English Resource Grammar, the largest HPSG-based
grammar for English currently available, and an insightful collection of analyses of many
aspects of English syntax.

In the first example, we showed that the ERG unfolds the general slash amalgamation

CHAPTER 2. FROM ERG TO MERGE 17

head comp phrase →

synsem

[
canonical synsem

local|cat|val|comps 2

]

head dtr|s
[
canonical synsem

local|cat|val|comps o list ⊕ 〈 1 | 2 〉

]
non head dtr|synsem 1 canonical synsem

Figure 2.10: Generalized realization of comps requirements in the revised head-complement
rule

principle of Bouma et al. (2001) into the specific cases assumed for this particular grammar,
which is necessary since relational goals are not supported in the LKB system. The result-
ing encoding does not capture the full generality of the principle and is less modular and
transparent than the formulation of Bouma et al. (2001) or its computational encoding in a
framework incorporating recursive relations, such as the Trale system.

In the second example, we discussed how the ERG captures the optionality of arguments
through the use of a single lexical entry, coupled with an ontology of markings distinguishing
optional from obligatory and unrealized from realized elements. Subject-head and head-
complement structures are modified accordingly, but due to the lack of a possibility to use
recursive relations in grammars implemented in the LKB system, the ERG analysis fails in
treating optional arguments in a general way, requiring two new types of ‘auxiliary’ phrases
which are otherwise unmotivated. The focus on a very lean system without relational goal
attachments to phrase structure rules thus results in a loss of generality and thereby trans-
parency and modularity of the grammars that can be expressed. Apart from the software
engineering aspect, this also breaks the clear link of the implementation to linguistic theory,
which in Copestake and Flickinger (2000) is identified as the hallmark distinguishing the
ERG from other grammar implementation efforts such as those around the Alvey Natural
Language Tools (Briscoe et al., 1987).

We showed that a recoding of the analysis of optionality in a system supporting relational
attachments can overcome this shortcoming by making use of a single recursive relation,
append, used to select the first non-optional argument on a list. A system including relational
attachments thus is better suited to achieve the goal of a modular and linguistically informed
grammar implementation.

2.1.2 Towards meaningful criteria for data structure and grammar
design in HPSG-based implementation efforts

2.1.2.1 Introduction

For parallel development of grammars for different languages, clearly articulated criteria for
determining the nature of the data structures to be used and guidelines for the organization of
the grammatical constraints are an essential prerequisite. In this section we want to address
the issue of developing such criteria for HPSG-based grammar implementation and present
some questions which we believe need to be answered to obtain a well-motivated standard
practice in grammar development. The questions pertain to where information should be
encoded and how it should be organized in order to obtain a compact and transparent gram-

CHAPTER 2. FROM ERG TO MERGE 18

mar. In the context of HPSG-based grammar implementation, this includes the following
questions: What motivates introducing a type in a grammar? When should attributes be
introduced? How should descriptions used throughout the grammar be organized compactly?

While the design of each grammar implementation platform makes particular assumptions
as to how these questions could be answered, there is little explicit discussion of these as-
sumptions. We believe that a thorough discussion of the questions is essential for guiding the
further development of implementation platforms towards a well-motivated implementation
standard for HPSG-based grammars.

As a contribution to this discussion, this section presents an experiment in which we
contrast the use of types in the English Resource Grammar (Flickinger et al., 2000, ERG)
with a more conservative use of types in a recoding of the ERG that we have undertaken. Our
experiment shows that it is possible to eliminate two thirds of the types that are defined in
the ERG without changing the meaning of the grammar in terms of which signs are licensed
by the grammar and what linguistic properties are associated with them. This is possible
since the types which we eliminated encode distinctions which are already encoded by other
types in the grammar. These redundant types thus seem to be an unnecessary complication
that should be eliminated to obtain a more transparent and compact grammar.

2.1.2.2 Types and what they are used for

Typed languages make it possible to verify the well-formedness of the complex data structures
used in current linguistic theories by requiring an explicit declaration of the modeled domain.
In HPSG (Pollard and Sag, 1994), a signature defines which types of objects exist, and which
attributes with which values are appropriate for the different types of objects. A hierarchy of
types is defined to make it possible to refer to classes and subclasses of objects. To encode a
particular distinction to be modeled in the grammar, one thus has a choice of introducing a
new attribute as appropriate for a type, or to define new subtypes of that type. For example,
one could encode a distinction between inverted and non-inverted verbs as a type distinction
under verb, or via a boolean attribute defined for verb.

Once a type is introduced, the instances of that type can be constrained by specifying a
type constraint associating the type with a description of the required values for its attributes.
This mechanism is used to express the grammatical constraints in HPSG linguistics, i.e., such
type constraints are used to define which linguistic objects are grammatical and which are
not.

In HPSG-based grammar implementation, the option of introducing new types and asso-
ciating them with descriptions through type constraints has also led to a second use of types,
which is not motivated by empirical distinctions that need to be made to correctly model
the domain. Instead, types are introduced as mere names for collections of descriptions,
i.e., abbreviations (Flickinger, 2000). While such a use of types is a possibility, based on an
example from the English Resource Grammar, we will illustrate below that it introduces a
significant level of unmotivated complexity into the modeled domain.

2.1.2.3 Types in the English Resource Grammar

In the version of the English Resource Grammar (Flickinger et al., 2000, ERG) we worked
with, there are 3559 distinct types, 1294 of which are glb types which are introduced by

CHAPTER 2. FROM ERG TO MERGE 19

the LKB compiler to obtain unique greatest lower bounds for each pair of types. For our
illustration we focus on the 225 subtypes of word (ignoring glb types). These types are
arranged in the relatively complex type hierarchy under word shown in figure 2.11 on the
next page.

2.1.2.4 An experiment reducing the number of types to what is empirically
required

For the experiment, we went through the subtypes of word and considered for each of the types
whether it introduces a linguistic distinction that is necessary to formulate the grammatical
constraints encoded in the ERG. Each type which was found not to introduce such a necessary
distinction was eliminated from the hierarchy and instead defined as an abbreviation to keep
the grammar specified compactly.11 This process resulted in the following, significantly
reduced type hierarchy below word :

non-derived-word derived-word

word

Since only types duplicating information encoded elsewhere were eliminated, the simplifi-
cation of the type hierarchy below word did not affect the coverage or the analyses provided
by the grammar, which was verified using the 1348 item test suite provided with ERG. The
complex type hierarchy of figure 2.11 thus appears to be irrelevant in terms of the structures
licensed by the grammar. Furthermore, the simplification did not result in any negative
side-effects with respect to computational issues, such as introducing disjunctions into the
grammar or requiring complex antecedents for implicational constraints.

2.1.2.5 Summary

The purpose of this section was to contribute to a discussion of the criteria guiding the
development of a well-motivated standard practice for HPSG-based grammar development.
Focusing on the motivation for type distinctions introduced in a grammar, we applied the
principle of Occam’s razor to a part of the ERG type hierarchy and eliminated all type
distinctions which are not motivated in terms of the sentences licensed by the grammar and
the analyses assigned to them. This eliminated almost the entire hierarchy under word and
thus resulted in a significant simplification of the grammar. In terms of outlook, we are
continuing this experiment with the intention of eliminating all type distinctions which are
not motivated in terms of the sentences licensed and the analyses assigned to them. Based
on the experience with the word subtypes described in this section, we are confident that the
resulting grammar will be significantly more transparent and compact than the original. We
therefore propose such a conservative use of types as a model which HPSG-based grammar
writers can follow to achieve a compact and transparent encoding.

11The experiment was carried out with a recoding of the ERG in the Trale system (Meurers et al., 2002),
which includes the possibility of defining macros to abbreviate descriptions.

CHAPTER 2. FROM ERG TO MERGE 20

word

topkey

modal_pos_lex_ent

modal_subj_pos_lex_ent

hcons_amalg_non_affixed_word compar_superl_adj_word
basic_superl_adj_word

basic_compar_adj_word
adj_atrans_superl_lexent

irreg_adj_word

basic_norm_word

norm_no_affix_word

intrans_adj_oddsem

norm_word

basic_norm_no_affix_word
pp_word

adv_word_nale

norm_mod_nonque_no_affix_word

unknown_word

n_title_nale

generic_v_np*_trans_lex_entry

v_np*_trans_psp_nale

v_np*_trans_prp_nale

v_np*_trans_presn3sg_nale

v_np*_trans_pres3sg_nale

v_np*_trans_past_nale

v_np*_trans_bse_nale

generic_n_intr_lex_entry

n_intr_sg_nale

n_intr_pl_nale

n_intr_mass_nale

adj_intrans_nale

rel_word

n_rel_pro_lexent

quasimodal_psp_word

pos_ought_verb_word

pos_modal_verb_word

past_ought_verb_word

norm_msg_word

n_x_to_y_lexent

norm_mod_no_affix_word

vp_adverb_word

int_vp_aux_adverb_word

int_vp_adverb_word

adverb_word

msg_amalg_word

p_ppcomp_lexent

p_nbar_comp_lexent

p_nbar_comp_nmod_lexent

p_cp_lexent

basic_prep_word

prep_word

p_reg_lexent

main_verb_mliszt_infl

main_verb_mliszt

main_verb

main_verb_std

hcons_amalg_word

hcons_amalg_basic_affixed_word

basic_intr_noun_word

n_intr_lex_entry
hcons_amalg_affixed_word

reg_adj_cp_word

reg_adj_atrans_cp_word

basic_n_temp_ppcomp_lexent

basic_noun_ppcomp_word noun_ppcomp_word

noun_ppin_word

adj_word

reg_adj_word
reg_intrans_adj

adj_trans_lexent

have_aux_pos_lex_entry

have_fin_aux_lex_ent

has_aux_lex_ent

had_aux_lex_ent

be_th_cop_pos

be_id_pos

amalg_word

n_plur_lexent

nonslash

nonwh_poss_word

basic_np_word

basic_np_adv_word

np_adv_word

np_sing_wordnp_word

personal_pro

np_pl_word

basic_np_sing_word

subconj_word

nontopkey

norm_num_word

unspecified_num

unspecified_num_with_compleme...

unspecified_num_without_compl...

approx_unspecified_num_withou...

specified_number

specified_num_with_complements

specified_num_without_complem...

ord_word

norm_card_word

card_only_word

complement_free_number

complemented_number

degree_spec_word

pdet_word_nonque

det_sing_nonque

det_word_nonque

non_affixed_np

n_proper_lexent

np_word_no_quant

abstr_minute_word

que_word

pdet_word_pl_mass_wh

pdet_word

n_part_lexent

generic_pro_adv_word

det_word

det_word_sing

det_word_modable

basic_degree_spec_word

que_nolabel_word

poss_word

n_proper_nale

basic_nontopkey

basic_mod_no_affix_notopkey_w...

norm_mod_no_affix_notopkey_wo..

nonrel

root_marker_word

lex_imperative

how_about_word

comp_how_about_or_why_vp_lexe..

msg_word

to_compl_elided_word

disc_adv_word

complementizer_word

whether_compl_word

comp_whether_if_fin_lexent

two_place_compl_word

sor_compl_word

how_compl_lexent

plain_compl_word
to_compl_word

basic_comp_to_prop_lexent

free_rel_pro_word

free_rel_det_word_gen

nonque

nonmsg

n_poss_clitic_lexent

be_verb

be_th_cop

be_th_cop_neg

be_prespart

be_being_lex_entry

be_pastpart

be_been_lex_entry

be_id

be_id_neg

be_fin

be_subj_neg_lex_entry

be_were_subjnct_neg_contr_lex...

be_was_subjnct_neg_contr_lex_...

be_pres_neg_lex_entry

be_is_neg_contr_lex_entry

be_are_neg_contr_lex_entry

be_am_neg_contr_lex_entry

be_aint_neg_contr_lex_entry

be_past_neg_lex_entry

be_were_neg_contr_lex_entry

be_was_neg_contr_lex_entry

be_subj

be_subj_lex_entry

be_were_subjnct_lex_entry

be_was_subjnct_lex_entry

be_pres

be_pres_lex_entry

be_is_lex_entry

be_are_lex_entry

be_am_lex_entry

be_past

be_past_lex_entry

be_were_lex_entry

be_was_lex_entry

be_be_lex_entry

basic_unknown_word

aux_verb_word_super

inf_aux_verb_word

quasimodal_word

ought_verb_word

generic_modal_verb_word
fin_modal_verb_word pres_modal_verb_word

modal_verb_word

generic_modal_neg_super
generic_modal_neg

basic_quasimodal_verb_word

quasimodal_bse_word

aux_verb_word psp_aux_verb_word
have_aux_word

have_fin

have_subj

have_pres

have_past

have_aux_neg_lex_entry

prd_aux_verb_word
be_copula

be_cop_pos_generic

be_cop_pos

be_cop_neg

bse_aux_verb_word

will_aux_word

will_aux_pos_lex_e

do_aux_word

do_fin

do_pres

do_aux_neg_word

do_aux_neg_pres

nonconj

main_verb_sans_key

mcna

hc-to-phr

contracted_aux_word

conj_word

Figure 2.11: The hierarchy below word in the ERG

CHAPTER 2. FROM ERG TO MERGE 21

2.2 Notes on correspondences and differences

2.2.1 The signature

2.2.1.1 Basic types and appropriateness conditions

The two systems Trale and LKB differ fundamentally regarding the way how the signature
is encoded. In Trale, the signature as the place where the data structure is declared, i.e.,
a type hierarchy and the appropriateness conditions are specified, and the theory are two
separate parts of the grammar that is implemented. In LKB no such distinction between the
signature and the theory is made. Types are introduced together with the appropriateness
conditions and the constraints on them. In our Trale grammar, the type declarations of the
erg therefore need to be split up into that part that belongs into the signature and that part
that belongs into the theory.

The signature in the Trale grammar mostly contains what in the erg is specified as the
fundamental types. These are the types that specify the basic linguistic data structures and
their appropriateness condition which is in HPSG the architecture of signs, synsem objects,
local and non-local objects etc. Furthermore, the signature contains all the types that are
below sort in the erg, i.e., all the types need for tense, aspect, case, vform, bool, etc.

In the LKB system, the grammar writer does not have to specify the greatest lower bound
for all types. The system does insert these so called glbtypes into the hierarchy automatically
during compile time. The Trale system, however, requires the specification of all unique
greatest lower bounds in the signature. The hierarchy below many types in our signature
contains therefore more subtypes than the same one specified in the erg. This is illustrated
by the two hierarchies for the type luk (the three-valued sort for bool named after the Polish
logician Jan Lukasiewicz) in figures 2.12 and 2.13. The hierarchy in figure 2.12 is the one

luk

na-or-plus na-or-minus bool

na plus-star minus-star strict-bool

plus-and-minus plus minus

Figure 2.12: Type hierarchy under luk as specified in the erg grammar

specified in the erg where the types na-or-plus and na-or-minus do not have a unique
greatest lower bound.

The hierarchy in figure 2.13 is the one specified in the Trale grammar where an additional
type na-or-plus-and-minus has been introduced below luk. This ensures that na-or-plus and
na-or-minus have a unique greatest lower bound, namely a-or-plus-and-minus.

CHAPTER 2. FROM ERG TO MERGE 22

luk

na-or-plus na-or-minus bool

na-or-plus-and-minus plus-star minus-star strict-bool

na plus-and-minus plus minus

Figure 2.13: The type hierarchy under luk as specified in the Trale grammar

2.2.1.2 Lexical types

The type hierarchy below word as specified in the Trale grammar is shown in figure 2.14.
The hierarchy below word specified in the erg was already shown in figure 2.11 on page 20.

non-derived-word derived-word

word

Figure 2.14: The hierarchy below word

It is significantly larger, since subtypes for all kinds of words (nouns, verbs, transitive verbs,
finite verbs, ergative verbs, . . .) are introduced. As already explained above, this is done
because there are no macros in LKB. All these lexical types are used as abbreviations in the
specifications of lexical entries. We therefore decided to encode these not as types in our
grammar but as macros. An example for the encoding of such lexical types will be given in
the section about lexical entries below.

2.2.1.3 Phrasal types

The major part of the type hierarchy below phrase in the merge is shown in figure 2.15.
In comparison, the hierarchy below phrase used in the erg is shown in figure 2.16 on

page 24. Many of these types below phrase are only introduced to abbreviate the specification
of the mother in phrase structure rules. Similarly to the lexical types, we encoded such types
as macros in our grammar. This will be discussed in more detail in section 2.2.2. The
only distinctions that are necessary in the grammar are the ones between unary and binary
phrases and headed and non-headed phrases. Every maximally specific type below phrase
corresponds to a phrase structure rule. The hierarchy in the Trale grammar will therefore
still get bigger the more rules we introduce.

CHAPTER 2. FROM ERG TO MERGE 23

ph
ra

se

bi
na

ry
_p

hr
as

e

he
ad

ed
_p

hr
as

e

no
n_

he
ad

ed
_p

hr
as

e

un
ar

y_
ph

ra
se

ba
si

c_
bi

na
ry

_n
on

_h
ea

de
d_

ph
ra

se
ba

si
c_

bi
na

ry
_h

ea
de

d_
ph

ra
se

no
n_

he
ad

ed
2_

ph
ra

se

he
ad

_f
in

al

he
ad

_i
ni

tia
l

ad
j_

h_
in

t_
ph

ra
se

ad
j_

he
ad

_s
co

p_
ph

ra
se

ad
j_

n_
in

t_
ph

ra
se

he
ad

_f
ill

er
_p

hr
as

e

he
ad

_s
pe

c_
ph

ra
se

he
ad

_s
ub

j_
ph

ra
se

no
un

_n
_c

m
pn

d_
ph

r

np
_n

_c
m

pn
d_

ph
r

np
_n

am
e_

cm
pn

d_
ph

r

fi
lle

r_
he

ad
_r

ul
e_

no
n_

w
h

fi
lle

r_
he

ad
_r

ul
e_

w
h_

nr
_f

in

fi
lle

r_
he

ad
_r

ul
e_

w
h_

nr
_i

nf

fi
lle

r_
he

ad
_r

ul
e_

w
h_

ro
ot

fi
lle

r_
he

ad
_r

ul
e_

w
h_

su
bj

ap
po

s_
ph

r

ap
po

si
tiv

e_
ph

ra
se

fr
ee

_r
el

_f
in

_p
hr

as
e

fr
ee

_r
el

_i
nf

_p
hr

as
e

h_
ad

j_
in

t_
ph

ra
se

he
ad

_a
dj

_s
co

p_
ph

ra
se

he
ad

_c
om

p_
ph

ra
se

he
ad

_m
ar

ke
r_

ph
ra

se
_e

ve
nt

he
ad

_m
ar

ke
r_

ph
ra

se
_n

om

n_
ad

j_
re

dr
el

_n
on

te
m

p

n_
ad

j_
re

dr
el

_t
em

p

n_
ad

j_
re

lc
l_

ph
ra

se

ba
si

c_
co

or
d_

ph
r

fi
lle

r_
he

ad
_r

ul
e_

re
l

m
ea

su
re

_n
p_

ph
ra

se

m
id

_c
oo

rd
_e

ve
nt

m
id

_c
oo

rd
_n

om

to
p_

co
or

d_
ev

en
t

to
p_

co
or

d_
no

m

he
ad

_o
nl

y_
ph

ra
se

ba
re

_v
ge

r_
ph

ra
se

ba
si

c_
he

ad
_o

pt
_c

om
p_

ph
ra

se

ex
tr

ac
te

d_
ad

j_
in

t_
ph

ra
se

ex
tr

ac
te

d_
ad

j_
te

m
p_

ph
ra

se

ex
tr

ac
te

d_
co

m
p_

ph
ra

se

ex
tr

ac
te

d_
su

bj
_p

hr
as

e_
fi

n

ex
tr

ac
te

d_
su

bj
_p

hr
as

e_
in

f

im
p

ye
sn

o_
ph

ra
se

he
ad

_o
pt

_c
om

p_
ph

ra
se

he
ad

_o
pt

_t
w

o_
co

m
p_

ph
ra

se

no
un

_o
pt

_c
om

p_
ph

ra
se

no
n_

he
ad

_o
nl

y_
ph

ra
se

fi
n_

no
n_

w
h_

re
l_

cl

ge
ne

ri
c_

ba
re

_n
p_

ph
ra

se

in
f_

no
n_

w
h_

re
l_

cl

np
_c

p_
ph

ra
se

te
m

p_
m

od
_n

on
w

h_
ph

ra
se

ba
re

_n
p_

ph
ra

se

pr
op

er
_n

p_
ph

ra
se

Figure 2.15: The hierarchy below phrase

CHAPTER 2. FROM ERG TO MERGE 24

phrase

measure_np_rule

measure_np_symbol_rule

run_on_s_coord_rule

top_coord_rule top_coord_nom_rule

top_coord_event_rulemid_coord_rule

mid_coord_nom_rule

mid_coord_event_rule
bare_np_rule

bare_np_sg_rule_robust

proper_np_rule

noun_title_cmpnd_rule np_n_cmpnd_rule_2

np_n_cmpnd_rule

np_name_cmpnd_rule

noun_n_cmpnd_rule
appos_rule

free_rel_inf_rule

free_rel_fin_rule

extrasubj_inf_rule

extracomp_rule

hopt2comp_rule

hoptcomp_rule

noptcomp_rule

adjh_s_rule

adjn_i_rule

adjh_i_rule

hcomp_rule
hmark_nom_rule

hmark_event_rule

meas_np_adj_rule

possessed_np_rule
np_cp_rule

num_noun_rule

partitive_np_rule

partitive_num_rule

temp_mod_nonwh_rule

temp_mod_wh_rule

no_copula_id_vp_rule

no_copula_prd_vp_rule

fin_non_wh_rel_rule

inf_non_wh_rel_rule

bare_vger_rule

extrasubj_fin_rule
imperative_rule

no_copula_nosubj_rule

yesno_rule

extradj_i_rule

extradj_temp_ruleroot_gap_rule_premod

filler_head_rule_rel root_gap_rule_postmod_scopal

root_gap_rule_postmod_interse..

filler_head_rule_non_wh

hadj_i_redrel_temp_rule

hadj_i_redrel_nontemp_rule

hadj_s_rule

hadj_i_relcl_rule

hadj_i_h_rule

hspec_rule

subjh_rule_decl

adjh_i_ques_rule

filler_head_rule_wh_nr_inf

filler_head_rule_wh_nr_fin

filler_head_rule_wh_subj

filler_head_rule_wh_root

phrasal

head_filler_phrase

head_filler_phrase_inf

head_filler_phrase_fin

non_rel_clause

yesno_phrase

no_copula_nosubj_phrase

interrog

wh_interrog

wh_interrog_fin

imp

decl

extracted_subj_phrase_fin

non_wh_rel_cl

inf_non_wh_rel_cl

fin_non_wh_rel_cl

temp_mod_phrase

temp_mod_wh_phrase

temp_mod_nonwh_phrase

root_gap_clause

root_gap_scopal

root_gap_intersect

possessed_np_phrase

partitive_num_phrase

partitive_np_phrase

num_noun_phrase

np_cp_phrase

no_copula_be_phrase

no_copula_prd_phrase

no_copula_id_phrase

meas_np_adj_phrase

head_spec_phrase

head_adj_phrase

n_adj_relcl_phrase

n_adj_int_phrase

n_adj_redrel_phrase

n_adj_redrel_temp

n_adj_redrel_nontemp

head_adj_scop_phrase

head_adj_int_phrase

h_adj_int_phrase

clause

rel_cl

basic_head_filler_phrase

basic_extracted_adj_phrase

extracted_adj_temp_phrase

extracted_adj_phrase
extracted_adj_int_phrase

bare_vger_phrase

adj_head_int_ques_phrase

non_headed_phrase

basic_coord_phr

coord_phr

nom_coord_rule

mc_phrase

headed_phrase

extracted_comp_phrase

basic_head_opt_comp_phrase

noun_opt_comp_phrase

head_opt_two_comp_phrase

head_opt_comp_phrase

extracted_arg_phrase

extracted_subj_phrase

extracted_subj_phrase_inf

head_only

head_nexus_rel_phrase

basic_head_mod_phrase_simple

head_mod_phrase_simple

adj_head_int_phrase

adj_n_int_phrase

adj_h_int_phrase

adj_head_scop_phrase

scopal_mod_phrase

isect_mod_phrase

adj_head_phrase

head_subj_phrase

head_comp_or_marker_phrase

head_marker_phrase
head_marker_phrase_nom

head_marker_phrase_eventhead_comp_phrase

non_rel_phrase

decl_phrase

head_nexus_phrase

non_clause

head_valence_phrase

head_mod_phrase

head_nexus_que_phrase

head_compositional

free_rel_phrase

free_rel_inf_phrase

free_rel_fin_phrase

basic_binary_headed_phrase

binary_headed_phrase

head_initial

appos_phr

head_final basic_n_n_cmpnd_phr

n_n_cmpnd_phr

np_n_cmpnd_phr_2

np_n_cmpnd_phr

np_name_cmpnd_phr

noun_n_cmpnd_phr

noun_title_cmpnd_phr

basic_head_final

basic_unary_phrase

unary_phrase
generic_bare_np_phrase

proper_np_phrase

bare_np_sg_phrase_robust

bare_np_phrase

basic_binary_phrase

binary_phrase

basic_measure_np_phrase
measure_np_symbol_phrase

measure_np_phrase

Figure 2.16: The hierarchy below phrase in the ERG

CHAPTER 2. FROM ERG TO MERGE 25

2.2.1.4 Lists

Another fundamental difference between LKB and Trale is the way how lists are encoded.
The LKB system does not provide any kind of list operations. That means that the grammar
writer has to encode the append of lists with the help of difference lists which have to be
explicitly declared in the signature. The Trale system, however, does provide list operations
like append. The only thing that is necessary is the declaration of a simple list type with
head and tail as appropriate features. Those type constraints in the erg that only take
care of the append of lists can therefore be encoded as much simpler constraints in the Trale
grammar.

One example where these two different list encodings make a crucial difference is the
slash amalgamation which ensures that each word collects the non-local values of all its
arguments onto its own non-local values. In the erg, four different types are introduced,
basic one arg, basic two arg, basic three arg, basic four arg, for words with one argument,
two arguments, etc. For each of these types a constraint is formulated which ensures that
the non-local values of the arguments (encoded as difference lists) are passed onto the
non-local lists of the word itself. The constraint for words with two arguments is shown in
figure 2.17.

basic_two_arg := lex_synsem &
[LOCAL.ARG-S < [NON-LOCAL [SLASH [LIST #smiddle,

LAST #slast],
REL [LIST #rmiddle,

LAST #rlast],
QUE [LIST #qmiddle,

LAST #qlast]],
LOCAL.CONT.INDEX individual],

[NON-LOCAL [SLASH [LIST #sfirst,
LAST #smiddle],

REL [LIST #rfirst,
LAST #rmiddle],

QUE [LIST #qfirst,
LAST #qmiddle]],

LOCAL.CONT.INDEX individual] >,
NON-LOCAL [SLASH [LIST #sfirst,

LAST #slast],
REL [LIST #rfirst,

LAST #rlast],
QUE [LIST #qfirst,

LAST #qlast]]].

Figure 2.17: A type constraint used for slash amalgamation in the erg

In our Trale grammar, on the other hand, only one principle for all words, regardless of
how many arguments they have, is necessary. This principle is shown in figure (2.18).

The relational goals collect slashes, collect rel,collect que ensure that the non-

CHAPTER 2. FROM ERG TO MERGE 26

(non_derived_word,
synsem:lex:plus)
*>
(synsem:(local:arg_s:X,

nonlocal:(slash:Slash,
rel:Rel,
que:Que)))

goal
(collect_slashes(X,Slash),
collect_rel(X,Rel),
collect_que(X,Que)).

Figure 2.18: The slash-amalgamation principle in the Trale grammar

local values are collected from the elements on the arg-s list. The definition of the relation
collect slashes is shown in figure 2.19.

% collect_slashes(+ArgSt,-Slash)
collect_slashes(ArgSt,Slash) if
when(ArgSt = (e_list;ne_list),

undelayed_collect_slashes(ArgSt,Slash)).

%undelayed_collect_slashes(+list-of-synsem,-list-of-local) if true.
undelayed_collect_slashes([],[]) if true.

undelayed_collect_slashes([(nonlocal:slash:X)|Rest_y], All_l) if
collect_slashes(Rest_y,Rest_l),
append(X,Rest_l,All_l).

Figure 2.19: Definition of collect slashes used for slash amalgamation

Similar definitions are implemented for collect rel and collect que.

2.2.2 The theory

2.2.2.1 The lexicon

The lexicon in the erg is organized in terms of a huge lexical hierarchy below the type word.
Complex descriptions are encoded in the lexical types which are used in the formulation of
lexical entries.

Figure 2.20 shows the Ergo lexical entry for the unergative verb sleep.
The declaration of the lexical types used in the description of this lexical entry are shown

in figure 2.21.
The type v unerg le used in the lexical entry of sleep is a subtype of main verb. This

lexical type is a subtype of main verb sans key, topkey, mcna and nonmsg. The latter three

CHAPTER 2. FROM ERG TO MERGE 27

sleep_v1 := v_unerg_le &
[STEM < "sleep" >,
SYNSEM.LOCAL.KEYS.KEY _sleep_rel].

Figure 2.20: Lexical entry in the erg grammar

nonconj := word &
[SYNSEM.LOCAL.CONJ cnil].

mcna := word &
[SYNSEM.LOCAL.CAT.MC na].

nonmsg := word &
[SYNSEM.LOCAL.KEYS.MESSAGE 0-dlist].

topkey := word &
[SYNSEM.LOCAL [KEYS.KEY #key,

CONT.--TOPKEY #key]].

hc-to-phr := word &
[SYNSEM.LOCAL.CAT.HC-LEX -*].

main_verb_sans_key := nonconj & hc-to-phr &
[SYNSEM.LOCAL [CAT.HEAD verb* & [AUX -*,

INV -*],
CONT.LISZT.LIST < v_event_rel, ... >,
KEYS [KEY.LABEL *cons*,

ALTKEY role_rel]]].

main_verb := main_verb_sans_key & topkey & mcna & nonmsg &
[INFLECTED -,
SYNSEM.LOCAL [KEYS.KEY #key,

CONT.LISZT <! #key !>]].

v_unerg_le := main_verb &
[SYNSEM unerg_verb].

Figure 2.21: Lexical type declarations in the erg

types are then subtypes of word.
In order to reduce the complexity of the signature in our Trale grammar we decided that

the same kind of lexical hierarchy can also be encoded as a macro hierarchy. Thus, the lexical
entry for sleep in the Trale grammar calls the macro @v unerg le as shown in figure 2.22.

The the macro hierarchy above @v unerg le corresponding to the lexical hierarchy in the

CHAPTER 2. FROM ERG TO MERGE 28

sleep ~~> @v_unerg_le.

Figure 2.22: Lexical entry in the Trale grammar

erg is shown in figure 2.23.

nonconj macro (non_derived_word, synsem:local:conj:cnil).

mcna macro (non_derived_word, synsem:local:cat:mc:na).

nonmsg macro (non_derived_word,
synsem:local:keys:message:e_list).

topkey macro (non_derived_word,
synsem:local:(keys:key:Key,

cont:topkey:Key)).

hc_to_phr macro (non_derived_word, synsem:local:cat:hc_lex:minus).

main_verb_sans_key macro (@nonconj, @hc_to_phr,
synsem:local:(cat:head:(verb,

aux:minus,
inv:minus),

cont:psoa)).

main_verb macro (@main_verb_sans_key, @mcna, @nonmsg, @topkey,
inflected:minus).

v_unerg_le macro (@main_verb,
synsem: @unerg_verb).

Figure 2.23: Lexical macros used in the Trale grammar

2.2.2.2 The phrase structure rules

Both systems, LKB and Trale, are parsing systems, which means that the grammar writer
needs to specify a set of phrase structure rules for those strings that the system is supposed
to recognize.

Figure 2.24 shows the specification of such a phrase structure rule, in this case the head-
complement rule, in the Ergo grammar.

Surprisingly, this rule does not show any explicit specification of a mother or daughters.
The only things specified are the name of the rule (hcomp), a type hcomp rule and a feature
declaration. The actual specification of the mother and the daughters is “hidden” in the
supertypes of hcomp rule. A subpart of this type hierarchy is shown in figure 2.25.

CHAPTER 2. FROM ERG TO MERGE 29

hcomp := hcomp_rule &
[RULE-NAME ’hcomp].

Figure 2.24: A phrase structure rule in the erg

head_initial := binary_headed_phrase &
[HEAD-DTR #head,
NON-HEAD-DTR #non-head & [SYNSEM.LOCAL.CONJ cnil_or_numconj],
ARGS < #head, #non-head >].

head_comp_or_marker_phrase := head_valence_phrase & head_compositional &
head_initial &

[SYNSEM canonical_synsem &
[LOCAL [CAT [MC #mc,

VAL [SUBJ #subj,
COMPS #comps,
SPR #spr]],

KEYS [ALTKEY #altkey,
MESSAGE #hmsg]]],

HEAD-DTR.SYNSEM.LOCAL [CAT [MC #mc,
VAL [SUBJ #subj,

COMPS < #synsem . #comps >,
SPR #spr]],

KEYS [ALTKEY #altkey,
MESSAGE #hmsg]],

NON-HEAD-DTR.SYNSEM #synsem & canonical_synsem,
C-CONT [LISZT <! !>,

H-CONS <! !>]].

head_comp_phrase := head_comp_or_marker_phrase &
[SYNSEM [LOCAL [CAT.POSTHEAD #ph,

CONJ cnil],
LEX #lex],

HEAD-DTR [SYNSEM.LOCAL.CAT [POSTHEAD #ph,
HC-LEX #lex]]].

hcomp_rule := binary_rule_left_to_right & head_comp_phrase.

Figure 2.25: Phrasal types in the erg

The actual daughters specification needed for the parser is the ARGS list specified in the
type declaration of head initial. The mother of a phrase that is licensed by the hcomp rule is
thus of type hcomp rule which is a subtype of head comp phrase and bibary rule left to right.
head comp phrase is then a subtype of head comp or marker phrase which itself is a subtype

CHAPTER 2. FROM ERG TO MERGE 30

of head initial.
The phrase structure rules in the Trale grammar differ from this encoding in two ways.

Figure 2.26 shows the encoding of the head-complement rule in the Trale grammar.

hcomp ## @head_comp_phrase(HeadDtr,NonheadDtr)
===>

cat> HeadDtr,
cat> NonheadDtr.

Figure 2.26: A phrase structure rule in the Trale grammar

The first difference with respect to the head-complement rule in the erg is that in Trale
the left-hand side and the right-hand side have to be explicitly specified in the rule. We there-
fore introduced the macro @head comp phrase(HeadDtr, NonheadDtr) with two arguments
corresponding to the two daughters of the rule. As can be seen in figure 2.27, the definition
of this macro nearly entirely corresponds to the type declaration of head comp phrase in the
erg.

head_comp_or_marker_phrase(NonheadDtr) macro (@head_valence_phrase,
head_initial,

synsem:(canonical_synsem ,
local: (cat:(mc:Mc,

val:(subj:Subj,
comps:Comps,
spr:Spr)),

keys:(altkey:Altkey,
message:Hmsg))),

head_dtr:synsem:local:(cat:(mc:Mc,
val:(subj:Subj,

comps:[Synsem|Comps],
spr:Spr)),

keys:(altkey:Altkey,
message:Hmsg)),

non_head_dtr:(NonheadDtr,synsem:(Synsem,canonical_synsem))).

head_comp_phrase(HeadDtr,NonheadDtr) macro (head_comp_phrase,
@head_comp_or_marker_phrase(NonheadDtr),

synsem: (local:(cat:posthead:Ph,
conj:cnil),

lex:Lex),
head_dtr: (HeadDtr, synsem:local:cat:(posthead:Ph,

hc_lex:Lex))).

Figure 2.27: Phrasal macros in the Trale grammar

CHAPTER 2. FROM ERG TO MERGE 31

This leads to the second difference in the encoding of phrase structure. We decided
that it is sufficient to characterize phrases according to their headedness and the kinds of
daughters they have (the resulting type hierarchy below phrase was shown in figure 2.15. We
did not encode the additional classification of phrases with respect to the phrase structure
rules which license them, as it is done in the erg with the help of the type rule and its
subtypes, two of which are hcomp rule and binary rule left to right shown in figure 2.25.
And, similar to the lexical types, we decided that many of the phrasal types in the erg are
simply used as abbreviations in the specifications of phrase structure rules and we therefore
encoded these as macros, as for example @head comp phrase(HeadDtr,NonheadDtr) and
@head comp or marker phrase(NonheadDtr) shown in figure 2.27.

2.2.2.3 The lexical rules

Most of the lexical entries specified in the lexicon of the Ergo grammar are not real words,
but so-called lexemes, i.e., lexical items without any inflectional endings and without any
agreement information. All these lexemes are input to lexical rules and only the outputs of
the lexical rules are the actual words that occur in sentences. All verbs, nouns and adjectives
are specified as such lexemes in the lexicon, categories like determiners and prepositions are
specified in the same way in the lexicon but are not transformed via lexical rules. All lexemes
in the lexicon are subtypes of word. All words that are the output of a lexical rule are a
subtype of lex rule supermost. The type hierarchy for word in the erg is shown in figure
2.28. An example for a lexical rule in the erg is shown in figure 2.29.

word lex rule supermost

word or lexrule

Figure 2.28: Hierarchy for words in the erg

third_sg_fin_verb_infl_rule :=

%suffix (!s !ss) (!ss !ssses) (ss sses) (!ty !ties) (ch ches) (sh shes) (x xes) (z zes)

lex_rule_infl_affixed &

[NEEDS-AFFIX +,

SYNSEM.LOCAL third_sg_fin_verb].

Figure 2.29: Inflectional lexical rule in the erg

Similar to the phrase structure rules described in the previous section, the relation between
the input and the output does not have to be explicitly specified within the specification of
the rule. In the case of the inflectional lexical rule shown in figure 2.29, this is done in the
declaration of the type lex rule infl affixed. This type declaration is shown in figure 2.30.

The inflectional lexical rule in the Trale grammar which is shown in figure 2.31 differs
from the lexical rule in the erg in two ways.

CHAPTER 2. FROM ERG TO MERGE 32

lex_rule_infl_affixed := lex_rule_compos &
[INFLECTED +,
KEY-ARG #keyarg,
SYNSEM #synsem,
ARGS < #dtr >,
ROOT #root,
POSSCL -,
DTR #dtr & [INFLECTED -,

KEY-ARG #keyarg,
SYNSEM #synsem,
ROOT #root],

C-CONT.LISZT <! !>].

Figure 2.30: Declaration of lex rule infl affixed in the erg

third_sg_fin_verb_infl_rule ##
Dtr

**>
(lr:lex_rule_infl_affixed,
needs_affix:plus,
synsem:local: @third_sg_fin_verb,
@lex_rule_infl_affixed_macro(Dtr))

morphs
X becomes Y when irregpres(X,Y),
(X,S,s) becomes (X,S,ssess) when letter_set_s(S),
(X,ss) becomes (X,sses),
(X,T,y) becomes (X,T,ies) when letter_set_t(T),
(X,ch) becomes (X,ches),
(X,sh) becomes (X,shes),
(X,x) becomes (X,xes),
(X,z) becomes (X,zes),
(X,C) becomes (X,C,s) when letter_set_s(C).

Figure 2.31: A lexical rule in the Trale grammar

First of all, the relation between the input and the output of the rule has to be explicitly
specified within the rule with the help of the macro @lex rule infl affixed macro(Dtr).
Secondly, the output of lexical rule in the Trale grammar is of type derived word. The
information with which lexical rule a word was derived is encoded with the help of the
feature lr and is not directly reflected by the type of the word itself as it is done in the
ergo grammar. The encoding of the inflection, in this case the generation of the correct third
person singular form of the verb, with the help of “morphs” is a direct reflection of the way
the inflection is encoded in the erg. Classes of letters are determined after which a certain
ending has to be added to the word to generate the correct form.

CHAPTER 2. FROM ERG TO MERGE 33

2.2.2.4 The principles

As already mention in section 2.2.1, in grammars written for the LKB system there is no dis-
tinction made between the signature and the theory, with the effect that types are introduced
together with the constraints on these. In our Trale grammar, however, we need to take these
declaration apart into the declaration of the type in the signature and the constraint that is
introduced for this type.

The Head Feature Principle is a good example to illustrate these two different encodings.
Figure 2.32 shows the declaration of type headed-phrase as a subtype of phrase together with
the constraint on it, the sharing of certain information between the head daughter and the
phrase itself, as specified in the Ergo grammar.

headed_phrase := phrase &
[ROOT -,
SYNSEM.LOCAL [CAT [HEAD head & #head,

HC-LEX #hclex],
AGR #agr,
CONJ #conj,
KEYS.KEY #key],

HEAD-DTR.SYNSEM.LOCAL local &
[CAT [HEAD #head,

HC-LEX #hclex],
AGR #agr,
CONJ #conj,
KEYS.KEY #key]].

Figure 2.32: The declaration of headed-phrase in the erg

The declaration of the type headed-phrase as part of the type hierarchy below phrase in
the Trale grammar was already shown in figure 2.15. The figure 2.33 shows the constraint
formulated for headed-phrase in the merge.

In a similar way, most of the type declarations of the erg have to be taken apart and
re-encoded in the merge.

CHAPTER 2. FROM ERG TO MERGE 34

headed_phrase *>
(root:minus,
synsem:local:(cat:(head:Head,

hc_lex:Hclex),
agr:Agr,

conj:Conj,
keys:key:Key),

head_dtr:synsem:local:(cat: (head:Head,
hc_lex:Hclex),

agr:Agr,
conj:Conj,
keys:key:Key)).

Figure 2.33: Constraint on headed-phrase in the Trale grammar

Chapter 3

Coverage of the grammar

As stated in the previous section, the general aim of this project is to implement a large-scale
grammar for English in Trale that has the same coverage as the erg (Flickinger et al., 2000,
p. 258). The following listing serves to illustrate the coverage of English constructions in
merge.

3.1 Basic declarative sentences

• intransitive verbs:

(2) Abrams works.

• transitive verbs:

(3) Abrams hired Browne.

• ditransitive verbs:

(4) a. Abrams showed the office to Browne.
b. Abrams showed Browne the office.

• sentential complements:

(5) Abrams bet Browne five dollars that Chiang hired Devito.

• predicatives:

(6) a. Abrams became competent.
b. Abrams became a manager.

• prepositional complements:

35

CHAPTER 3. COVERAGE OF THE GRAMMAR 36

(7) a. Abrams works for Browne.
b. * Abrams works of Browne.
c. Abrams approves of Browne.
d. * Abrams approves for Browne.

• impersonal constructions

(8) a. It is time for an interview.
b. It is true that Abrams hired Browne.
c. There is a bookcase in the office.
d. There are programmers.
e. There are programmers interviewing Devito.
f. There are programmers older than Devito.
g. There stands in the office a bookcase.
h. There is Abrams, Browne, and Chiang.

• auxiliaries/modal verbs

(9) a. Abrams may hire Browne.
b. Abrams can hire Browne.
c. Abrams did hire Browne.
d. Abrams has hired Browne.
e. Abrams had better hire Browne.
f. Abrams better hire Browne.
g. Abrams could have hired Browne.
h. Abrams could be hiring Browne.
i. Abrams could have been hiring Browne.

• control verbs

(10) a. Abrams promised Browne to hire Chiang.
b. He promised us to evaluate himself.
c. * Abrams promised there to be a bookcase in the office.
d. Abrams promised Browne to be interviewed by Chiang.
e. Abrams urged Browne to hire Chiang.
f. Browne was urged to hire Chiang.
g. Abrams urged Browne to be interviewed.
h. Abrams was urged to be interviewed.
i. Abrams appealed to Browne to hire Chiang.
j. Abrams appealed to Browne to be interviewed.

CHAPTER 3. COVERAGE OF THE GRAMMAR 37

• tough constructions

(11) a. It was hard to show an office to Chiang.
b. Chiang was hard to show an office to.
c. Offices are hard to show to Chiang.
d. Chiang was hard for Abrams to show an office to.
e. Offices are hard for Abrams to show to Chiang.
f. Chiang was hard to show an office.

• passive

(12) a. Abrams was hired (by Browne).
b. An office was shown to Abrams (by Chiang).
c. Chiang was shown an office by Abrams.
d. Abrams was urged to hire Browne by Chiang.
e. Abrams was urged by Chiang to hire Browne.
f. Abrams was known (by Chiang) to be interviewing Browne.
g. Abrams was made to interview Browne.
h. Abrams got hired (by Browne).
i. Abrams had Browne hired (by Chiang).

• inversion

(13) a. That office, the consultants work in.
b. To Browne, Abrams showed an office.
c. Competent, Abrams is.
d. Hire Browne, Abrams did.
e. Not one programmer did Abrams hire.
f. At no time did Abrams hire a programmer.
g. No more competent was Abrams.
h. A trustworthy employee is Abrams.
i. In the office is the bookcase.
j. Competent is the manager who hired Abrams.
k. Standing in the office is the bookcase.
l. Never does Abrams work with Browne.

m. In the office is a good location for the bookcase.

• unbounded dependencies

(14) a. Which manager did Abrams know was interviewing programmers.
b. Which managers did Abrams know were interviewing programmers.

CHAPTER 3. COVERAGE OF THE GRAMMAR 38

c. Which department is Abrams the manager of?
d. Whose department does Abrams work in?

• comparatives

(15) a. Chiang is (two days) older than Browne.
b. Abrams is (two days) older than thirty years.
c. Abrams is more competent than Browne.
d. Abrams is as competent as Browne.
e. Abrams is the oldest manager.
f. Abrams is the most competent manager.
g. Abrams manages more programmers than Browne manages.
h. Abrams manages as many programmers as Browne manages.
i. Abrams interviewed more programmers than were hired.

• conjunction

(16) a. Chiang is a manager and Devito is a programmer.
b. Chiang and Devito work.
c. Browne, Chiang, and Devito work.
d. Browne and Chiang and Devito work.
e. Both Chiang and Devito work.
f. Either Chiang or Devito works.
g. Neither Chiang nor Devito works.
h. Chiang hired Devito and manages Browne.

• ellipsis

(17) a. Abrams was interviewing programmers, and Browne was, too.
b. Abrams was interviewing programmers, and so was Browne.
c. Abrams was interviewing programmers, or Browne was.
d. Abrams wasn’t interviewing programmers, nor was Browne.
e. Abrams wasn’t interviewing programmers, and neither was Browne.
f. Browne wasn’t interviewed by Devito, but he was by Chiang.
g. Abrams doesn’t consult for Browne, but he does for Chiang.

• binding

(18) a. Devito knew that he had hired a programmer.
b. The manager evaluated her staff.
c. Her manager interviewed Browne.
d. The person who manages him knows that Browne is competent.

CHAPTER 3. COVERAGE OF THE GRAMMAR 39

e. Devito interviewed programmers. He hired Browne.
f. Browne evaluated himself.
g. The managers evaluated each other.

• adverb placement

(19) a. Evidently Chiang works.
b. Chiang evidently works.
c. Chiang works, evidently
d. Chiang has evidently been leaving.
e. Evidently Chiang showed Devito an office.
f. Chiang evidently showed Devito an office.
g. * Chiang showed evidently Devito an office.
h. * Chiang showed Devito evidently an office.

• quantifier

(20) a. Every manager who interviewed a programmer hired him.
b. If a programmer was interviewed by every manager, he was hired.
c. Every engineer who has a bookcase arrived.
d. The engineer who has a bookcase arrived.
e. Every manager interviewed one of the programmers.
f. Two programmers were interviewed by every manager.

• negation

(21) a. Devito has not hired Abrams.
b. Devito could not hire Abrams.
c. Devito could not have hired Abrams.
d. Devito could not be hiring Abrams.
e. Devito did not hire Abrams.
f. * Devito hired not Abrams
g. Devito is not a manager.

3.2 Interrogative sentences

• direct questions

(22) a. She works for whom?
b. She works for who?
c. She manages whom?

CHAPTER 3. COVERAGE OF THE GRAMMAR 40

d. She manages who?
e. She showed whom an office?
f. She showed who an office?
g. Whom does she work for?
h. Who does she work for?
i. For whom does she work?
j. * For who does she work?
k. Who hired Browne?

• embedded interrogatives

(23) a. Abrams does not know who hired Browne.
b. Abrams does not know which managers interviewed Browne.
c. Abrams does not know who Browne hired.
d. Abrams does not know who showed Browne an office.
e. Abrams does not know who(m) Browne was hired by.
f. Abrams does not know by whom Browne was hired.
g. Abrams does not know which programmers Browne hired.
h. Abrams does not know where Browne works.
i. Abrams does not know when Browne was hired.
j. Abrams does not know how many consultants Browne has hired.
k. Abrams does not know how competent Browne is.

• selection of interrogatives

(24) a. Kim knows whether Sandy sleeps.
b. Kim knows whether to sleep.
c. * Kim knows whether Sandy to sleep.
d. Kim knows when to sleep.
e. Kim knows what to think Sandy likes.
f. Kim knows who to think Sandy was hired by.
g. Kim knows if Sandy sleeps.
h. Kim wonders whether Sandy sleeps.
i. Kim wonders whether to sleep.

• tag questions

(25) a. It is raining, isn’t it?
b. There is a meeting, isn’t there?
c. * It is raining, isn’t there?
d. Sara is sleeping, isn’t she?

CHAPTER 3. COVERAGE OF THE GRAMMAR 41

e. * Sara is sleeping, isn’t there?
f. Sara will sleep, won’t she?
g. * Sara will sleep, can’t she?
h. Sara sleeps, doesn’t she?
i. Everyone slept, didn’t they?

3.3 Imperative sentences

(26) a. Hire a programmer!
b. Be trustworthy!
c. * Are trustworthy!
d. Do not hire a programmer!
e. Don’t hire a programmer!
f. You hire a programmer!
g. You be trustworthy!
h. Don’t you hire a programmer!
i. Don’t you be trustworthy!
j. Everyone hire a programmer!
k. Everyone be trustworthy!
l. Don’t anyone hire a programmer!

m. Don’t anyone be trustworthy!

3.4 Noun phrases

3.4.1 Pronouns

• Personal pronouns: Case

(27) a. He hired her.
b. * She hired he.

• Coordination

(28) a. She and I interviewed Abrams.
b. I and she interviewed Abrams.
c. Me and her interviewed Abrams.
d. Her and me interviewed Abrams.
e. * Her and I interviewed Abrams.
f. * She and me interviewed Abrams.

• Reflexives

CHAPTER 3. COVERAGE OF THE GRAMMAR 42

(29) The woman evaluated herself.

• Generic pronoun

(30) Anyone with an office works.

3.4.2 Head-Specifier constructions

(31) a. The programmer was hired.
b. This programmer was hired.
c. These programmers were hired.
d. That programmer was hired.
e. Those programmers were hired.
f. Some programmer was hired.
g. Some programmers were hired.
h. * Any programmer was hired.
i. * Any programmers were hired.
j. Most programmers were hired.
k. Few programmers were hired.
l. No programmers were hired.

m. Many programmers were hired.
n. A dozen programmers were hired.
o. One programmer was hired.
p. More managers were interviewed.
q. Only the more competent programmers were interviewed.
r. Every manager who interviewed a programmer hired him.
s. Not one programmer did Abrams hire.

3.4.3 Modification

• Premodifiers

(32) a. Abrams sees Browne as a competent manager.
b. Abrams bet Browne five dollars that Chiang hired Devito.

• Postmodifiers

– Prepositional phrases

(33) a. It is time for an interview.
b. Abrams has an office with a bookcase.

– Relative clauses

CHAPTER 3. COVERAGE OF THE GRAMMAR 43

(34) a. Abrams has an office that Browne showed Chiang.
b. Abrams has an office which Browne showed Chiang.
c. Abrams has an office Browne showed Chiang.
d. Abrams hired a woman that Browne interviewed.
e. Abrams hired a woman Browne approved of.

– Verb phrases

(35) a. Abrams hired a woman interviewed by Chiang.
b. Abrams hired a woman working for Chiang.

3.4.4 Other kinds of noun phrases

• Partitive constructions

(36) a. None of the consultants work for Abrams.
b. Five of the seven consultants work for Abrams.
c. Any five of the seven consultants can work for Abrams.
d. Most of the staff is competent.
e. Most of the program works.
f. Almost all of the program works.
g. Five teams of programmers were hired.
h. Half of the programmers were interviewed by Abrams.
i. Half the programmers were interviewed by Abrams.
j. Fewer than half the programmers were hired. (NP)
k. Fewer than half of the programmers were hired. (NP)
l. An number of programmers were interviewed. (NP)

m. An number of programmers was interviewed.

• Head-complement NPs

(37) a. All but seven programmers were hired.

• Titles

(38) a. Browne is the manager.
b. Lee Browne is the manager.
c. Mr. Browne is the manager.
d. Mr. Lee Browne is the manager.
e. A Mr. Lee Browne is the manager.
f. A Lee Browne is the manager.

CHAPTER 3. COVERAGE OF THE GRAMMAR 44

g. Lee Browne, Esq is the manager.

• Dates

(39) a. Browne was hired on 1/3/84.
b. Browne was hired on the 1st of January, 1984.
c. Browne was hired on January 1st, 1984.

Chapter 4

Description of the components
of the grammar

In this section all the components of the merge are described in detail. These include: the
signature, the phrase structure rules, classes of lexical entries, the lexical rules and the princi-
ples (implicational constraints). We will give a brief description of every single instantiation
of these components that can be found in the merge. How these different components of the
grammar finally interact in order to license the different phenomena covered by the merge
grammar is described in section 5.

4.1 The Signature

Although we reduced to the size of the merge signature compared to the size of the original
erg signature significantly it still contains more than a thousand types. Describing each of
these types and its appropriateness conditions would probably be far beyond the scope of
this grammar documentation. We will therefore here only discuss those parts of the signature
which are important in order to understand the description of the linguistic theories in the
following sections.

4.1.1 Signs

The basic architecture of signs in the merge is very similar to the one generally assumed
within HPSG theories following Pollard and Sag (1994). This basic architecture is shown in
figure 4.1.

In addition to the known feature phon and synsem, signs in the merge have the ap-
propriate features key arg, inflected, root, robust, posscl, and c cont. The feature
key arg seems to be used to indicate which element on the daughters list of a phrase is the
head, namely the one which is [key arg plus]. The feature inflected indicates whether
a sign is the output of an inflectional lexical rule. The feature root seems to be used in
the LKB grammar to mark which signs the parser should provide as acceptable parses, i.e.,
it marks the start symbols of the grammar (we can probably get rid of this feature). The

45

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 46

sign
phon list
key arg bool

synsem

canonical synsem

opt bool

lex bool

local

local

cat

cat

head

head

mod list

prd bool

inv bool

aux bool

tam

tam

tense tense

aspect aspect

mood mood

possable bool

poss bool

strict head bool

mobile bool

val

valence

subj list

spr list

comps list

spec list

keycomp bot

mc luk

posthead bool

hc lex bool

cont cont

agr individual

keys

keys

key mod relation

message list

altkey mod relation

compkey mod relation

ocompkey mod relation

conj conj

ctxt

[
ctxt

activated bool

presup list

]
arg s list

stemhead stemhead

nonlocal

nonlocal

slash list

rel list

que list

modified xmod

inflected bool
root bool
robust bool
posscl bool
c cont mrs min

Figure 4.1: The basic architecture of signs in the merge

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 47

feature robust is used to enable ungrammatical phrases such as missing determiners for
singular nouns in the LKB grammar (this feature is currently of no use for the merge). The
feature posscl marks whether sign contains a possessive clitic. The feature c cont specifies
the “construction content” of a particular sign. For phrases, it is always structure shared in
a certain way with the phrase’s content values, as the principle in figure 4.2 shows.

phrase *>
(synsem:(canonical_synsem,

local:cont:(top:Hand,
index:Index,
e_index:Event)),

c_cont:(top:Hand,
index:Index,
e_index:Event)).

Figure 4.2: The C CONT principle

The additional appropriateness conditions for the two only subtypes of sign, word and
phrase, are shown in figure 4.3. [

word
alts alts min

][
phrase
dtrs list

]
Figure 4.3: Appropriateness conditions for word and phrase

The feature alts appropriate for words allows lexical entries to block lexical rule appli-
cation. The dtrs feature appropriate for phrases is necessary in the merge in connection
with the grisu interface to enable the proper display of tree structures (we might be able to
get rid of this at some point). The subtypes of word and phrase and their appropriateness
conditions are discussed in sections 4.3 and 4.2.

4.1.2 Synsem objects

The appropriate features for canonical synsem, the value of the feature synsem, are opt,
lex, local, nonlocal and modified. Besides the known features local, nonlocal and
lex, the feature opt is used to indicate whether the synsem elements on a comps list are
optional complements or not and the feature modified indicated whether a sign has been
modified or not.

The type synsem has the subtypes shown in figure 4.4.

4.1.3 Local objects

Local objects have the appropriate features cat, cont, agr, ctxt, arg s, keys, conj,
and stemhead, of which the first five are traditional HPSG features and the last three are
erg (and merge) specific features.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 48

synsem_min

synsem unexpressed

expressed_synsem non_canonical

canonical_synsem expressed_non_canonical

amalgamating_synsem non_amalgamating_synsem gap pro_ss

gappro

unexpressed_reg

anti_synsem

Figure 4.4: Subtypes of synsem

The feature agr is introduced on local rather than on cat (or on head) since coor-
dination schema unify the cat value of the daughters with that of then mother, but need
to be able to change agr on the mother (to get plural agreement on verb when subject is a
coordinated NP with ”and” vs. ”or”).

The occurrence of arg s as a local feature is a bit unexpected and it also means, that it
is present on both, words and phrases. Words always specify in the lexicon what the value
of their arg s list is. For phrases, the constraint shown in figure 4.5 is necessary to ensure
that the arg s feature also has some value that is more specific than list, namely e list.

phrase *> (synsem:local:arg_s:[]).

Figure 4.5: The value of arg s on phrases

The feature key is used for semantic selection and the five features appropriate for keys
objects have the following functions: key functions as a pointer to the main relation in
liszt (a content feature which will be further introduced in section 4.1.5). altkey functions
as a pointer to an alternate relation in the liszt feature. compkey is a pointer to the
complement’s main relation and ocompkey a pointer to the oblique complement’s main
relation. message specifies the message type for propositions.

The value of the feature conj has two subtypes, cnil and strict-conj (i.e., non-cnil). cnil
is always the value of non-coordinated structures, in a coordinated structure the left and
right conjunct receive the appropriate subtype of strict-conj as their conj value. For more
info about how this works, see section 4.2.13 below.

The feature stemhead of a lexical entry is used by inflectional affixes to ensure the
desired stem without overly restricting the value of head itself, since this needs to remain
non-specific to allow conjunction of non-similar heads. This feature is only given a more
specific value for lexical entries which get inflected (verbs, nouns, and adjectives).

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 49

4.1.4 Cat objects

Objects of type cat, the value of the feature cat, have the well-known appropriate features
head and val, and the merge specific features mc, posthead and hc lex.

The feature mc (standing for main clause) has three possible values: +, -, and na (non-
applicable). Non-clauses are always [mc na], since they can’t really be said to be root or
non-root. All clauses have the mc value bool, and if they have a restricted distribution then
they are [mc +] or [mc -].

The feature posthead value is used to encode the relative position of a modifier with
respect to the head.

The feature hc lex is used to identify the lex value of synsem objects that results
from combining the word with its complements. This is done in the head-complement rule
which structure-shares the lex value of the mother with the hc lex of its head dtr (see
section 4.2.4). Most words are specified as being [hc lex minus] in the lexicon, i.e., if they
combine with their complements in a head-complement phrase, the resulting phrase is [lex
minus]. But the head-complement structures ”thirty-two” and ”two o’clock”, for example,
are still lexical signs ([lex plus]), not phrasal ones, since they can appear as prenominal
adjectives and in noun-noun compound constructions, respectively.

4.1.5 The content

4.1.6 Head objects

Objects of type head, the value of the feature head, have the well-known appropriate fea-
ture mod, prd,inv, and aux, and the merge specific features tam, possable, poss,
strict head, mobile.

The feature tam encodes the tense, aspect and mood values of signs. The three features
possable, strict head and mobile are encoded as subtypes of head in the erg grammar
and all other subtypes of head, like verb, noun, adj, etc, are cross-classified with these three
types according to whether they are possable, a strict type or mobile. Since this results
in huge type hierarchy below head we decided to encode these three properties as boolean
features. The feature possable encodes whether whether a sign with a certain head type
can in principle be a possessive (?) and the feature poss then says whether it really is a
possessive. This means only head types which are [possable plus] can be [poss plus].

The feature strict head is needed for coordination (see erg file syntax.tdl, line 2320
for more information).

The feature mobile marks those things that can be extracted in the complement-extraction
rule, from which, for example, nominative-case NPs are excluded by not marking all nouns
as [mobile plus].

4.1.7 Lists

The type hierarchy below list implemented in the merge grammar should also be briefly
discussed here because it is more complex than the usual distinction between empty and
non-empty lists. This hierarchy is shown in figure 4.6.

The type ne list introduces the features hd and tl and the principles shown in figure 4.7
further constrain the list subtypes. One of the types that occurs in many parts of the merge

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 50

list

o list e or one list ne list

e list o nelist one list one or more list

Figure 4.6: The type hierarchy below list

o_nelist *> (hd:(unexpressed,
opt:plus),

tl:o_list).

one_list *> tl:e_list.

one_or_more_list *> tl:ne_list

Figure 4.7: Constraints on list subtypes

is the type o list which is used within the valence features to require the saturation of a
phrase. A phrase is thus saturated if the value of its comps list is o list, i.e., if the comps
list is either empty or only consists of elements that are of type unexpressed (a subtype of
synsem), as required by the constraint on o nelist shown in figure 4.7.

4.2 Phrase Structure Rules

4.2.1 Phrasal types and phrase structure rules

Every phrase structure rule of the merge licenses a phrase corresponding to one of the atomic
types in the type hierarchy below phrase. To get an overview of the different phrase structure
rules so far implemented in the grammar it is therefore helpful to look at the general set up
of the type hierarchy below phrase which we already saw in figure 2.15.

Phrases are further divided into headed and non-headed phrases and binary and unary
phrases. All the atomic types corresponding to the phrase structure rules are subtypes of the
five types head initial, head final, head only, non head only, and non headed2 phrase.

In the following, each phrase structure rule belonging to an atomic type in the hierarchy
below phrase is described in detail. The purpose of the more general phrasal types and
especially the constraints on these types, like the head feature principle applying to headed-
phrase, are described in section 4.5.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 51

4.2.2 General phrasal macros

There is a number of general macros which occur repeatedly in the specification of the phrase
structure rules. These are briefly described here.

phr_synsem macro (canonical_synsem,
lex:minus).

phrasal macro (phrase,
synsem: @phr_synsem).

Figure 4.8: Phrasal macro

head_nexus_rel_phrase macro (headed_phrase,
synsem:nonlocal:rel:Rel,
head_dtr:synsem:nonlocal:rel:Rel).

head_nexus_que_phrase macro (headed_phrase,
synsem:nonlocal:que:Que,
head_dtr:synsem:nonlocal:que:Que).

head_nexus_phrase macro (@head_nexus_rel_phrase,@head_nexus_que_phrase).

Figure 4.9: head nexus phrase macro

The macro head nexus phrase, which calls the two macros head nexus que phrase and
head nexus rel phrase, as shown in figure 4.9, ensures that in headed phrases the rel
and que values are shared between the head daughter and the phrase itself. The macro
head valence phrase, shown in figure 4.10 ensure, that also the slash value of a headed
phrase is identical to its head daughter’s slash value. The name of this macro might suggest

head_valence_phrase macro (@head_nexus_phrase,
synsem:nonlocal:slash:Slash,
head_dtr:synsem:nonlocal:slash:Slash).

Figure 4.10: head valence phrase macro

that it also functions as some kind of valence principle. But it should be noted here that there
is no general valence principle in the entire merge. Instead, the saturation of the valence
features comps, subj and spr is specified in the respective phrase structure rules directly
and will be described in the following sections.

Another macro whose name is a bit misleading is the macro head compositional shown
in figure 4.11. It does not act as a kind of semantics principle for headed phrases. Instead it
specifies that certain parts of the head daughter’s cont value, namely the top, index, and
e index, are identical to these feature values in the phrase’s c cont value.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 52

head_compositional macro (headed_phrase,
c_cont:(top:Hand,

index:Index,
e_index:Event),

head_dtr:synsem:local:cont:(top:Hand,
index:Index,
e_index:Event)).

Figure 4.11: head compositional macro

non_clause macro (@head_nexus_phrase,
synsem:local:(cat:mc:na,

keys:message:e_list)).

clause macro (@phrasal,
synsem:(local:(cat:(head:v_or_g,

val:comps:o_list),
conj:cnil),

nonlocal:que:e_list)).

Figure 4.12: clause and non clause macro

The macro clause specifies what description a phrase needs to satisfy in order to be
a clause, i.e., it must be [lex minus], its head type must be verb or gerund, it must be
saturated ([comps o list]), not a conjunct ([conj cnil]) and have an empty que list. For
a non-clause, the feature mc (main clause) is not applicable and the message must be an
empty list.

The macro clause in connection with the macro decl phrase then specifies what re-
quirements a declarative phrase needs to fulfill as shown in figure 4.13. A declarative phrase
is thus a phrase that is not inverted, can have a boolean value for mc and meets certain
semantic requirements.

4.2.3 Head-subject rule

The phrase structure rule subjh licensing phrases of type head subj phrase in the merge
and the macro @head subj phrase, which contains most of the specifications used in this
rule are shown in figure 4.14. As usual in a head-subject phrase, the synsem value of the
non head dtr must be identical to the element on the head daughter’s subj list. To encode
the fact that a head subj phrase has saturated its subject, the subj list contains one element,
an anti synsem, instead of being completely empty. In addition, the comps list of the mother
and the two daughters in a head-subject phrase must be saturated, i.e., either o list or e list.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 53

non_rel_phrase macro (@head_nexus_rel_phrase,
synsem: (local:keys:message:[(message,Msg,

(handel:Mhand,
soa:Soahand))],

nonlocal:rel:e_list),
head_dtr:synsem: (local:cont: (top:Hdhand,

index:Ind),
nonlocal:(que:e_list,

rel:e_list)),
c_cont:(top:Mhand,

index:Ind,
liszt:hd:Msg,
h_cons:hd:(sc_arg:Soahand,

outscpd:Hdhand))).

decl_phrase macro (@non_rel_phrase,
synsem:local:(cat:(head:inv:minus_star,

mc:bool),
keys:message:[prpstn_rel]),

c_cont:(liszt:[relation],
h_cons:[qeq])).

decl macro (@decl_phrase,@clause).

Figure 4.13: decl macro

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 54

head_subj_phrase(HeadDtr,NonheadDtr) macro (head_subj_phrase,
@head_valence_phrase,
@decl,

synsem:local:(cat:(head:(v_or_g,
vform: fin_star,
prd:minus,
tam: @ind_or_mod_subj_tam),

posthead:plus,
mc:bool,
val:(subj:[anti_synsem],

comps:e_list,
spr:Spr)),

keys:altkey:Altkey,
conj:cnil),

head_dtr:(HeadDtr,synsem:local:(cat:(val:(subj:[Synsem],
spr:Spr,
comps:o_list),

mc:na),
keys:altkey:Altkey)),

non_head_dtr:(NonheadDtr,synsem:(Synsem,canonical_synsem ,
local:(cat:(head:(subst,poss:minus),

val:(subj:o_list,
comps:o_list,
spr:o_list))),

nonlocal:(slash:e_list,
rel:e_list,
que:e_list

)))).

subjh ## @head_subj_phrase(HeadDtr,NonheadDtr)
===>

cat> NonheadDtr,
cat> HeadDtr.

Figure 4.14: The head-subject rule

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 55

4.2.4 Head-complement rule

The phrase structure rule hcomp and the macro head comp phrase licensing phrases of type
head comp phrase are shown in figure 4.15. The only important information that is directly

head_comp_phrase(HeadDtr,NonheadDtr) macro (head_comp_phrase,
@head_comp_or_marker_phrase(NonheadDtr),

synsem: (local:(cat:posthead:Ph,
conj:cnil),

lex:Lex),
head_dtr: (HeadDtr, synsem:local:cat:(posthead:Ph,

hc_lex:Lex))).

hcomp ## @head_comp_phrase(HeadDtr,NonheadDtr)
===>

cat> HeadDtr,
cat> NonheadDtr.

Figure 4.15: The head-complement rule

specified in this macro is the fact that the mothers lex value is identical to the head daugh-
ter’s hc lex value. This means that a head-complement phrase is only [lex minus] if this is
required by the head daughter via its hc lex value. As already mentioned in section 4.1.4
above, this also allows head complement phrase to also be [lex plus] and thus to function as
lexical signs which is necessary for expression like “thirty-two”.

The head of a head-complement phrase must be specified as conj:cnil (which distinguishes
it from the heads of head-marker phrases).

The rest of the specifications necessary for head-complement phrases are part of the macro
head comp or marker phrase shown in figure 4.16. It should be noted here that, although
this macro mentions the term “marker”, the merge grammar does not contain a marker
phrase which is significantly different from the head-complement construction. Instead, those
elements which were traditionally markers in HPSG theories are lexical heads selecting the
phrase they mark via the comps list. Thus, traditional markers, such as complementizers,
occur as the heads of head-complement phrases, while other elements, such as conjunctions,
occur as the heads of the closely related head-marker phrases (see section 4.2.6).

The macro head comp or marker phrase basically functions as a valence principle spec-
ifying that the synsem value of the non-head daughter must be identical to the first element
on the head daughter’s comps list and that the rest of this comps list is passed up to the
mother.

In addition to head, feature values passed from head daughter to mother include agr,
mc, altkey, key, message, conj and the nonlocal features. The non-head daughter must
be specified as conj:cnil or numconj.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 56

head_comp_or_marker_phrase(NonheadDtr) macro (@head_valence_phrase, @head_compositional,
head_initial,

synsem:(canonical_synsem ,
local: (cat:(mc:Mc,

val:(subj:Subj,
comps:Comps,
spr:Spr)),

keys:(altkey:Altkey,
message:Hmsg))),

head_dtr:synsem:local:(cat:(mc:Mc,
val:(subj:Subj,

comps:[Synsem|Comps],
spr:Spr)),

keys:(altkey:Altkey,
message:Hmsg)),

non_head_dtr:(NonheadDtr,synsem:(Synsem,canonical_synsem)),
c_cont:(liszt:e_list,

h_cons:e_list)).

Figure 4.16: head comp or marker phrase

4.2.5 Optional complement rules

4.2.5.1 Head-optional-complement rule

A number of lexical heads in the merge have optional complements. To ensure that a phrase
can be saturated even if these optional complements are not realized there were originally
two head-optional-complement rules (hoptcomp and hopt2comp) as shown in figure 4.17.

The hoptcomp rule removes one optional complement from the comps list, whereas the
hopt2comp rule removes two optional complements from the comps list.

As discussed in section 2.1.1.3, we eliminated these two optional complement rules and
instead introduced a more general head complement schema, which realizes the first element
on a comps list which is not an optional, unrealized complement.

4.2.5.2 Noun-optional-complement rule

Noun-optional-complement phrases (phrases of type noun opt comp phrase licensed by the
noptcomp rule), are head-only phrases that remove the head of the daughter’s comps list,
provided it is specified as opt:plus and has empty nonlocal lists. The tail of that list, as
well as the lex specification, are inherited by the mother. The daughter has a head value
of type n or p; that is, nominal or prepositional.

4.2.6 Head-marker rules

Rather misleadingly named, the “marker” in a so-called head-marker phrase in merge is
always a conjunction, and it is, in fact, the head daughter. Head-marker phrases are only used

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 57

head_opt_comp_phrase(Dtr-sign) := (head_opt_comp_phrase,@basic_head_opt_comp_phrase,
synsem:local:cat:val:comps:Comps,
head_dtr: (Dtr, inflected:plus,

synsem:local: (cat:val:comps:
[(unexpressed,opt:plus)|
(Comps,[expressed_synsem|_])],

keys:key:event_rel))).

hoptcomp ## @head_opt_comp_phrase(Dtr)
===>

cat> Dtr.

head_opt_two_comp_phrase(Dtr) := (head_opt_two_comp_phrase, @basic_head_opt_comp_phrase,
synsem:local:cat:val:comps:Comps,
head_dtr: (Dtr, inflected:plus,

synsem:local:(cat:val:comps:
[(unexpressed,opt:plus)|
[(unexpressed,opt:plus)|

(Comps,[expressed_synsem|_])]],
keys:key:event_rel))).

hopt2comp ## @head_opt_two_comp_phrase(Dtr) ===>
cat> Dtr.

Figure 4.17: The head-optional-complement rules

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 58

basic_head_opt_comp_phrase macro (basic_head_opt_comp_phrase,
@head_valence_phrase,
@head_compositional,

inflected:Infl,
posscl:Posscl,
synsem:(canonical_synsem,

local:(cat:(val:(subj:Subj,
spr:Spr,
spec:Spec),

hc_lex:Lex,
mc:Mc,
posthead:Ph),

conj:cnil,
keys:(altkey:Altkey,

message:Msg)),
modified:Mod),

head_dtr:(inflected:Infl,
posscl:Posscl,
synsem:(local:(cat:(val:(subj:Subj,

spr:Spr,
spec:Spec),

mc:Mc,
hc_lex:Lex,
posthead:Ph),

keys:(message:Msg,
altkey:Altkey)),

modified:Mod)),
c_cont:(liszt:e_list,

h_cons:e_list)).

Figure 4.18: The macro basic head opt comp phrase

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 59

for coordination in the erg and merge, not for complement clauses with a complementizer,
as usually in hpsg.

Head-marker phrases are head-initial, and like head-complement phrases in that the non-
head daughter has a synsem value structure-shared with the head of the head daughter’s
comps list (see the discussion of @head comp or marker phrase in section 4.2.4). The tail
of that list, as well as the subj and spr specifications (and others), are inherited by the
mother. The head daughter must be an (inflected) word, specified as conj:strict conj. In
fact, this is the only property distinguishing the heads of head-marker phrases from the
heads of head-complement phrases; the head of a head-complement phrase must be specified
as conj:cnil.

nonlocal feature specifications are structure-shared between both daughters and mother.
The mother’s lex specifications are inherited from the non-head-daughter.

4.2.6.1 Nominal head-marker rule

In phrases of type head marker phrase nom, licensed by the hmarknom rule and described
by the macro @head marker phrase nom, the non-head daughter has a key value of type
non event rel.

4.2.7 Head-specifier rule

Phrases of type head spec phrase, licensed by the rule hspec and described by the macro
@head spec phrase, are head-final, and are characterized by mutual selection between the
head and the specifier. The comps value is inherited from the non-head daughter.

In a head-specifier phrase, the non-head daughter’s synsem value is structure-shared with
the the single member of the head daughter’s spr list. The tail of the list is inherited by the
mother, as are spec and subj. comps is specified as o list .

Furthermore, the non-head daughter’s spec list contains a synsem which must be con-
sistent with the head daughter’s in a variety of respects (as enforced by unification): head,
comps, index, top, key, and modified.

Both daughters are specified as inflected:plus.

4.2.8 Modification

In merge, modification is licensed via the list-valued mod feature, which is either empty or
contains a synsem.

Phrases involving modification are described by the macro @basic head mod phrase simple.
The modifier is the non-head daughter, and the synsem on its mod list is structure-shared
(or certain paths are structure-shared) with the synsem of the head-daughter. Currently, the
structure-sharing of paths is specified as it is in erg, though structure-sharing at the synsem
level would be preferable.

In addition to head, the features with values structure-shared between mother and head
daughter include agr, spr, subj, conj, altkey, and key. A head-modifier phrase is
specified as modified:hasmod, and both its comps and rel lists must be empty. The mother
inherits the values of both mc and message from the non-head daughter.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 60

The non-head daughter must have o list-valued comps and spr lists, a key value of type
independent rel, an empty que list, and be specified as conj:cnil.

Specific constructions that involve modification are either a kind of adjunct-head phrase
(pre-modification), or a kind of head-adjunct phrase (post-modification). Properties of both
classes are discussed below, and descriptions of specific construction types follow.

Adjunct-head phrases are head-final, described by the macro @adj head phrase. An
adjunct-head phrase is specified as modified:lmod star, and the value of the xmod feature
periph is structure-shared with that of the non-head daughter. The values of posthead
and lex are inherited from the head daughter, and the non-head daughter must be specified
as prd:minus, and have empty comps, rel and que lists.

Intersective adjunct-head phrases have a head daughter specified as tense:no tense and
posthead:minus.

Head-adjunct phrases are head-initial, described by the macro @head adj phrase. A
head-adjunct phrase is specified as posthead:plus and modified:rmod star. que and rel are
inherited from the head-daughter. The head daughter’s value of the feature modified must
be notmod or rmod. The non-head daughter must be specified as posthead:plus, and que
must be empty.

4.2.8.1 Intersective adjunct-noun rule

A phrase of type adj n int phrase, described by the macro @adj n int phrase and licensed by
the rule adjn i, is an intersective adjunct-head phrase with a head value of type noun. spr
specifies something with a key value of type quant rel.

4.2.8.2 Noun-adjunct rules

Noun-adjunct rules license head-adjunct phrases in which the head daughter is a so-called N’.
Postnominal modifiers are grouped into two classes: reduced relatives, and relative clauses.
Separate rules license modification by each, but all rules licensing postnominal modification
are described by @n adj int phrase. A noun-adjunct phrase has a head value of type noun, an
empty comps list, and is specified as modified:periph:na or minus. The non-head daughter
must be a phrase specified as prd:plus, mc:na, and it must have an empty slash list.

Reduced relative noun-adjunct rules Both rules licensing postnominal modification by
a so-called reduced relative are described by @n adj redrel phrase. In this kind of a phrase,
the non-head daughter has a mod list specifying something with a local value of type
intersective mod. The non-head daughter itself is specified as tense:no tense, its rel list is
empty, and its subject is of type unexpressed.

Reduced relatives are not a phrasal type per se, and unlike other relatives they have an
empty rel list. Qualified candidates include prepositional phrases and present participial
verb phrases.

Phrases of type n adj redrel temp or n adj redrel nontemp (involving a so-called reduced
relative), are licensed by the rules nadj rr t, and nadj rr nt respectively.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 61

Nontemporal reduced relative noun-adjunct rule The key value is of type non-
temp rel and an altkey value of type nontemp or conj rel.

Temporal reduced relative noun-adjunct rule The value of the feature key is of type
temp loc abstr rel and an altkey value of type temp abstr or conj rel.

Relative clause noun-adjunct rule Phrases of type n adj relcl phrase are licensed by
the nadj rc rule, described by the macro @n adj relcl phrase(HeadDtr,NonheadDtr). The
non-head daughter must have a head value of type verbal, a vform value of type fin or inf,
and o list-valued subj and comps lists. It is not required to have a non-empty rel list.

This kind of phrase is specified as periph:plus, which blocks iterative modification by
relative clauses, since the mod value of a relative clause specifies something marked as modi-
fied:periph:na or minus. spr specifies something with a key value of type i or e quant deg rel.

4.2.9 Filler-head rules

4.2.9.1 Filler-head relative rule

Phrases of type filler head rule rel are non-headed binary phrases licensed by the fillhead rel
rule. Apparently, they are non-headed in order to allow a prd:plus specification on the mother
and a prd:minus specification on the would-be head daughter. The macro @n adj int phrase
(invoked by all rules licensing postnominal modification) requires that the non-head daughter
be specified prd:plus. This property distinguishes relative clauses from all others, and thus
the specification acts as a filter.

The mother inherits head feature aux, inv, mod, tam, and vform from the non-
head2 daughter. The head value is of type verb, specified as finite (vform:fin), nonin-
verted (inv:minus), predicative (prd:plus), mood:strict ind or mod subj, with a nonempty
mod value specified as a synsem min with a local value of type intersective min.

Wh-relatives are specified as posthead:plus; they have an empty comps list, an o list-
valued subj value inherited from the non-head2 daughter, and a spr list containing an
anti synsem with empty nonlocal lists. They have empty que and slash lists, but a
non-empty rel list.

The non-head2 daughter has a nonempty slash list, whose member is structure-shared
with the synsem value of the non-head daughter. This synsem is specified as having o list-
valued subj and comps lists. Furthermore, the non-head2 daughter is inflected, has an
o list-valued comps list, and empty que and rel lists.

The non-head (filler) daughter has a non-empty rel list, empty que and slash lists, and
is inflected.

4.2.10 Non-wh-relative rules

Non-wh-relatives include the maximally specific phrase types fin non wh rel cl (finite non-
wh-relatives, or bare relatives) , and inf non wh rel cl (infinitive non-wh-relatives, or simple
infinitive relatives). These phrases are licensed by the fin non wh rel and inf non wh rel
rules, respectively, and are distinguished primarily by their vform and subj values.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 62

The mother has empty subj and comps lists, regardless of what the daughter’s values
were (although the daughter’s comps list must be of type o list). Thus, the daughter may
be phrasal, as is the case with simple infinitive relatives with complement gaps.

4.2.11 Extracted argument rules

Extracted-argument phrases are head only phrases, so the HFP applies, and are required to
satisfy the description @head valence phrase, so nonlocal features are passed from daughter
to mother.

In every case, some valence item is specified as an object of type gap, a synsem object
whose local value is structure-shared with the element on its slash list. Previously dis-
cussed constraints and specifications ensure that this slash value ends up on the mother’s
slash list.

4.2.11.1 Extracted complement rule

In a phrase of type extracted comp phrase, licensed by the rule extracomp, the first element
on the comps list of the daughter is a gap synsem. The rest of the comps list, as well as
the subj and spr values, are passed up to the mother. A simplified version of the macro
describing a phrase of type extracted comp phrase is shown in figure 5.10.

4.2.11.2 Extracted subject rules

Phrases of type extracted subj phrase fin or extracted subj phrase inf l licensed by the rules
extrasubj f and extrasubj i respectively, have empty valence lists. The head daughter has
a gap specified as case:nom on its subj list. A simplified version of the macro describing a
phrase of type extracted subj phrase fin is shown in figure 5.11.

4.2.12 Extracted adjunct rules

Since adjuncts do not appear on any arg s list, adjunct “extraction” must be handled
differently than those cases involving arguments. Phrases of type extracted adj int phrase
are a subtype of head only phrase, so the HFP applies, but are not head-valence phrases.
Thus, a slash value may be specified on the mother which is not present on the daughter.
That slash value has a mod value consistent in a variety of respects (head, valence, etc.)
with the daughter. The daughter must have an empty subj list.

4.2.13 Coordination rules

In a coordinate structure, described by @coord phr (a phrase of type basic coord phr, which
is a subtype of non headed2 phrase, so that it is binary and non-headed), both daughters and
the mother structure-share their lex, cat, modified and nonlocal feature values. Fur-
thermore, the phrase’s png value is inherited from the non head dtr2 (the right daughter),
while the key value is inherited from the non head dtr (the left daughter). The phrase is
specified as divisible:minus star.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 63

The grammar distinguishes between top- and mid- coordination rules. Top-coordination
rules specify that the altkey value of the phrase is structure-shared with both daughters,
but the index and Eindex values are inherited from the non-head2 daughter.

Mid-coordination rules specify that the altkey value of the phrase is of type conj rel,
and is the sole member of the c cont liszt.

In a top-coordination phrase, the non-head daughter has a conj value of type conj , while
the non-head2 daughter has a conj value of type complex conj. The value of the non-head
daughter’s conj feature is the head of the non-head2 daughter’s conj:chead:left list. In a
mid-coordination phrase, the phrase has a conj value of type phr conj, and its chead value
is inherited from the non-head2 daughter. The non-head daughter has a conj value of type
conj , while the non-head2 daughter has a conj value of type complex conj. The value of
conj:chead:left is a list with two members, the second of which is the conj value of the
non-head daughter.

Event coordination rules Phrases of type top coord event are licensed by the top coord e
rule. Both daughters have a key value of type event or degree or no rel, and the non-head
daughter has a nonempty spr list containing a synsem specified as key:relation. The mother
has an o list-valued comps list, and an index value of type conj event.

Phrases of type mid coord event are licensed by the rule mid coord e. Both daughters
have a key value of type event rel, and the mother has an index value of type conj rel.

Nominal coordination rules Nominal coordination rules specify that both daughters
have an index value of type ref ind, that their divisible values are structure-shared, and
that the non-head daughter has a head value of type n or a, and an empty comps list.

Phrases of type top coord nom are licensed by the top coord nom rule.
Phrases of type mid coord nom are licensed by the mid coord nom rule. Both daughters

have a key value of type basicNom, and the c cont index value is specified as pn:nonfirstsg.

4.2.14 Special NP rules

4.2.14.1 Specifier-less noun phrases

These head-only phrases, which are all of type generic bare np phrase, remove the daughter’s
spr specification, while still incorporating the (unrealized) specifier’s key value into the
semantics of the phrase (via c cont).

The daughter has a head value of type noun, is inflected, and has an empty comps list,
an o list-valued subj list, and an empty slash list. Its key value is of type nonpro rel.

The mother has an altkey value of type implicit quant rel, and empty valence lists.

Proper noun phrase rule Phrases of type proper np phrase are licensed by the rule
proper np. Eligibility to be the daughter of a proper noun phrase is primarily semantic;
the daughter’s key value must be of type abstr named np rel, with an altkey value of
basic nom rel. Further, the daughter is specified as divisible:minus star (in other words, it is
a singular count noun). The specifier’s key value is of type def np rel.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 64

Bare noun phrase rule Phrases of type bare np phrase are licensed by the rule bare np.
Bare noun phrases involve common nouns that do not need specifiers to be licensed as NPs
– like mass nouns and plurals. Eligibility depends upon the specification of the value of the
feature divisible as plus star. The specifier’s key value is of type udef rel.

Bare verbal gerund phrase rule Phrases of type bare vger phrase are licensed by the
rule bare vger. The daughter of a bare gerund phrase is specified as head:gerund, with
an o list-valued comps list, a key value of type gerund rel, and an altkey value of type
no rel, which is not only inherited by the mother, but contributed to the semantics of the
phrase via structure-sharing with a c cont specification, which further specified as being of
type udef rel. Thus these gerund phrases are implicitly quantified in a way similar to bare
noun phrases. Another similarity to bare noun phrases is that the daughter is specified as
synsem:local:cont:index:divisible:plus, and the valence lists of the mother are all empty.

4.2.14.2 Compound noun phrases

Compound noun phrases are head-final, inheriting the agr, val, and nonlocal feature
values from the head-daughter, which must be specified as lex:plus star, and the feature
modified must have the value notmod or lmod. Further, the head daughter has a non-
empty spr list, specifying a non-optional specifier with key value quant rel. The non-head
daughter has empty nonlocal lists. Both daughters have an empty comps list, are specified
as inflected:plus, and have a key value of type non pro rel. Noun compounds are specified
as lex:plus star, with a head value noun star and an empty mod list.

Noun-noun compound rule Phrases of type noun n cmpnd phr are licensed by the
noun n cmpnd rule. The head daughter of a noun-noun compound phrase is specified as pe-
riph:minus. The non-head daughter is specified as lex:plus star, with a head value noun star,
specified further as prd:minus. Its non-optional specifier synsem specification is of type un-
expressed. Both daughters have an altkey value of type no rel. The mother inherits its
modified:periph specification from the non-head daughter.

NP-noun compound rule Phrases of type np n cmpnd phr are licensed by the np n cmpnd
rule. NP-noun compound phrases are specified as modified:periph:na. The head daughter
is specified as lex:plus, and modified:periph:na or minus, and has an altkey value of type
no rel. The non-head daughter has an empty spr list, a key value of type abstr named rel,
and an altkey value of type implicit quant rel. It is specified as lex:plus.

NP-name compound rule Phrases of type np name cmpnd phr are licensed by the rule
np name cmpnd. NP-name compound phrases are specified as modified:periph:na. The head
daughter has a key value of type named np rel, while the non-head daughter has a key value
of type named np rel and an altkey value of type implicit quant rel. Both daughters are
specified as modified:periph plus and lex:plus.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 65

4.2.14.3 Temporal modifier rule

Phrases of type temp mod nonwh phrase are licensed by the temp nwh rule. Basically, these
are derivational non-head-only phrases, taking temporal noun phrases and making them
modifiers.

The daughter is an ordinary NP (head:noun, inflected:plus, spr:o list, comps:〈 〉), with
a key value of type modable rel, and an empty rel list.

Inherited from the daughter are prd, comps, index, and nonlocal feature specifica-
tions. The daughter’s key value is structure-shared with the mother’s altkey value.

The phrase’s own head value is of type modnp star, and it has a nonempty mod list
containing a synsem min with head value of type nominal or verbal, a nonempty spr list (a
synsem min with key value of type quant or deg rel), and an o list-valued comps list.

Further, this phrase subcategorizes for both a non-optional subject, and an optional
specifier.

The subject is specified as nominal, with head specifications poss:minus, strict head:plus,
and tam:mood:ind or mod subj. The subject has an empty comps list, o list-valued spr
and subj lists, and empty nonlocal lists.

The specifier has a head value of type adv, an o list-valued spr list, and empty que list,
and has a key value of type degree rel.

The key value of the phrase is of type unspec loc rel, and is contributed to the semantics
of the phrase via c cont.

A phrase of type temp mod nonwh phrase has the additional specifications that the spec-
ifier is an anti synsem, and the daughter has empty slash and que lists.

4.2.14.4 Measure NP rule

Phrases of type measure np phrase are licensed by the measure np rule.
A measure-NP phrase is a binary non-headed phrase with a head value adv or partn,

with empty mod, subj, comps, and nonlocal feature lists. Their spec list specifies a
predicative adjective (head:adj, prd:plus) whose altkey value is of type non conj rel, and
whose key value is of type mod relation. They select an optional specifier (via spr) with
a head value of type adv , a key value of type degree rel, an o list-valued spr list and an
empty que list. Its own key value, which is the first element on the c cont liszt, is of
type deg rel. agr and inflected specifications are inherited from that daughter. modified
value is inherited from the non-head daughter.

The non-head2 daughter is a lexical item (lex:plus star) with head value of type noun,
empty subj, comps, slash lists. It selects an non-optional specifier with empty nonlocal
feature lists, whose key value is of type udef rel. That rel binds the index of the non-head2
daughter, which is specified as gen:real gender and pn:strict nonthirdsg. Its own key value
is of type nonpro rel, and its altkey value is of type no rel.

The non-head daughter has a head value of type intadj, has an empty comps list, o list-
valued spec and spr lists, and is specified as inflected:plus. Its key value is of type const rel,
and its altkey value is of type mod relation.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 66

4.2.14.5 Free relative rules

Free relatives are head-initial phrases, with a nominal or prepositional head value (n or p),
empty valence lists, and empty nonlocal feature lists. The head daughter of a free relative
phrase has a nonempty que list, and a slash value structure-shared with the slash value of
the non-head daughter. The head daughter is further specified as having an empty comps
list, and o list-valued spr and subj lists.

The non-head daughter is a finite or infinitive uninverted clause or VP; that is, it has a
verbal head value, and is specified as inv:minus and vform:fin or inf, and o list-valued comps
and spr lists. Its slash value is specified as structure sharing its key, altkey and index
values with the head daughter. Thus, the relationship between the gap and the wh-phrase
is semantic, while the purely syntactic specifications of the non-head daughter’s slash value
are tied to the slash value of the free relative pronoun, which are specified in their lexical
entries. This allows for a syntactic mismatch between the gap in the non-head daughter and
the properties of the free relative pronoun which serves as filler, while ensuring a semantic
fit.

The free relative phrase itself inherits its agr specifications from the head daughter, and
has empty val and nonlocal lists.

Infinitive free relative rule These are phrases of type free rel inf phrase, licensed by the
freerel inf rule. The non-head daughter of an infinitive free relative phrase is an infinitive
VP, whose unsaturated subj list contains a synsem with an empty slash list.

Finite free relative rule These are phrases of type free rel fin phrase, licensed by the
freerel fin rule. The non-head daughter in a finite free relative phrase is finite, with an
o list-valued subj list.

4.3 Lexical Entries

4.3.1 Common nouns

Head feature properties: The head value is of type noun, and mod list is empty.

Selectional properties: Empty subj list. spr specifies a non-optional specifier with head
value det, an empty subj list, and o list-valued comps and spr lists.

Semantic properties: key is of type basic nom rel, and is a member of liszt.

Other properties: agr feature value is structure-shared with the index feature value (except
where noted). The stemhd value is countnstem.

Intransitive nouns (@n intr le)

Selectional properties: Empty comps list. The specifier has a key value of type quant or wh rel.

Examples: dog and bookcase

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 67

Nouns taking PP complements (@n ppcomp le)

Selectional properties: These nouns select a complement with head value of type prep,
specified as [prd -], whose semantic argument is its own. Specific lexical entries restrict
the relational type of their PP complement.

Semantic properties: The key value is of type diadic nom rel.

Examples: belief and month

Plural nouns taking PP complements (@n plur ppcomp le)

Other properties: These nouns have the agr specification pn:thirdpl star in the lexicon, and
thus show a pattern of plural agreement with singular morphology.

Examples: staff

Nouns taking PP[of] complements (@n ppof le) These nouns look much like other
nouns selecting PP complements, with the following exception:

Selectional properties: The key value of the PP complement is specified as x of rel.

Examples: manager and apartment

Nouns taking CP complements (@n cpcomp fin le)

Selectional properties: These nouns select a non-optional uninverted finite complement clause
(head value comp, all valence lists specified as o list). This CP has the mood specification
strict ind or mod subj.

Semantic properties: The key value is of type basic hcomp nom rel, and the value of its
(handle-valued) argument is structure-shared with the top specification of the CP.

Examples: fact and belief

Mass nouns (@n mass le)

Selectional properties: The specifier has a key value of type quant or wh rel.

Other properties: Nouns in the class differ from intransitive nouns only in their stemhd
specification, which is massnstem.

Examples: time

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 68

4.3.2 Time and date expressions

Hour nouns (@n hour le)

Head feature properties: Hour nouns have a local value of type nomod local, a head value
of type noun star, an empty mod value, and are specified as poss:minus.

Selectional properties: Empty subj list. They select an optional specifier with a head value
of type adv with o list-valued spr and comps lists, a non-empty spec value, and a
key value of type degree rel. Hour nouns select three optional complements (the last
implicitly so). The first complement has a head value of type intadj, empty comps and
slash lists, and a key value of type minute rel. The second complement has a head
value of type no head, has an empty comps list, and a key value of type am pm rel. The
third complement has a head value of type prep, a key value of type temp loc rel, and
a mod value specifying a key value structure-shared with the noun’s own. This third
complement is predicative, and is specified as strict head:plus, tense:no tense, and has
o list-valued spr and comps lists and a non-empty subj list. All three complements are
specified as conj:cnil.

Nonlocal feature properties: Empty nonlocal feature values.

Semantic properties: The key value is of type numbered hour rel.

Other properties: The agr feature value specifies sort:time. The base lexical entries of hour
nouns are specified as non-lexical and inflected.

Examples: noon

Temporal PP-complement nouns (@n temp ppcomp le)

Head feature properties: Temporal PP-complement nouns have a head value of type noun,
an empty mod value, and are specified as poss:minus.

Selectional properties: They have an empty subj list. They select a non-optional specifier
with a head value of type det , specified as mobile:minus, with o list-valued spr and
comps lists and an empty subj. They select an optional complement with a head value
of type prep, specified as prd:minus, with an o list-valued comps list, and a key value
of type x of rel.

Semantic properties: The key value is of type temp abstr rel.

Other properties: The agr feature value specifies sort:time. Their stemhd value is of type
countnstem, and their base lexical entries are specified as lexical and uninflected.

Examples: hour and day.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 69

Definite partitive day (@n def day part le)

Head feature properties: This lexical class containing day has a head value of type noun star,
and an empty mod value.

Selectional properties: It has empty subj and comps lists. It selects a non-optional specifier
with a head value of type det , specified as mobile:minus, with o list-valued an comps
list, an empty subj list, and a key value of type abstr def rel.

Nonlocal feature properties: It has empty nonlocal feature values.

Semantic properties: Its key value is of type def day part rel.

Other properties: Specified as posthead:plus. Its agr feature value specifies sort:time. The
base lexical entry is specified as lexical and uninflected. Index/agreement specifications
are given in the lexical entry.

Day of week nouns (@n day of week le) Day-of-week nouns look like temporal PP
complement nouns, with these additional specifications:

Selectional properties: The compkey value of the complement is non day diadic modable rel,
whose inst value specifies sort:time.

Semantic properties: Furthermore, day-of-week nouns have a key value of type dofw rel, and
an altkey value of type basic nom rel.

Examples: tuesday

Day of month nouns (@n day of month le) Day-of-month nouns look like temporal
PP complement nouns, with these additional specifications:

Head feature properties: Specified as prd:plus.

Selectional properties: The specifier has a key value of type abstr def rel, and complement
has a compkey value of type mofy rel, whose inst value specifies sort:time. The com-
plement must also have an empty slash list.

Nonlocal feature properties: Empty nonlocal feature values.

Semantic properties: Day-of-month nouns have a key value of type dofm rel, and an altkey
value of type basic nom rel.

Other properties: Specified as inflected:plus. Their agr feature value (structure-shared with
index) specifies that they are non-divisible, neuter, and third-singular.

Examples: first

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 70

Cardinal day of month nouns (@n day of month card le) Cardinal day-of-month
nouns look like ordinary day-of-month nouns in some respects, but their selectional properties
are different, they are not predicative, and some semantic feature specifications are different.

Selectional properties: The specifier of a cardinal day-of-month nouns has different semantic
feature specifications than the specifier of an ordinary day-of-month noun: the key value
is of type implicit quant rel, and the altkey value is of type mofy rel. Cardinal day-
of-month nouns also select an accusative nominal complement, specified as mobile:plus,
poss:minus, strict head:plus and mood:ind or mod subj. This complement must have
o list-valued subj and spr lists, an empty comps list, an empty message list, be specified
as conj:cnil, and have a key value of type yofc rel. (That is, these nouns take a specifier
corresponding to the month, and a complement corresponding to the year.)

Semantic properties: The liszt of a cardinal day-of-month noun has an additional member,
of type unspec rel, and the altkey value is unspecified.

Examples: three

Month nouns (@n month le) Month nouns nouns look like temporal PP complement
nouns, with these additional specifications:

Selectional properties: The complement has a compkey value of type yofc rel, whose inst
value specifies sort:time. The complement must also have an empty slash list.

Semantic properties: Month nouns have a key value of type mofy rel, and an altkey value
of type basic nom rel.

Examples: january

Month-year nouns (@n month year le)

Head feature properties: Month-year nouns have a head value of type noun star, have an
empty mod value and are specified as poss:minus.

Selectional properties: Month-year nouns select a non-optional specifier with a key value
of type quant or wh rel, and a non-optional accusative nominal complement, specified as
mobile:plus, poss:minus, strict head:plus, and mood:ind or mod subj. This complement
should have an o list-valued spr list, and empty subj, comps and slash lists. Its key
value must be of type yofc rel.

Nonlocal feature properties: Their nonlocal lists are all specified as empty.

Semantic properties: The key value of a month-year noun is of type mofy rel ; also on liszt
is an x of rel taking the indices of the month-year noun and its complement as arguments.

Other properties: They have the agr specifications divisible:minus, pn:thirdsg star, and
sort:time. The base lexical entries are specified as lexical and inflected.

Examples: january

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 71

Year nouns (@n year le) Year nouns look like intransitive nouns, with the following
exceptions:

Nonlocal feature properties: Their nonlocal lists are all specified as empty.

Semantic properties: The key value is of type yofc rel, and the altkey value is of type
basic nom rel.

Other properties: They have the agr specifications divisible:minus, pn:thirdsg star, and
sort:time.

Examples: nineteen eightyfour (1984)

4.3.3 Proper nouns (@n proper le)

Proper nouns are intransitive nouns, with some additional specifications.

Selectional properties: The agreement feature divisible of the specifier is specified as minus
and the agreement feature pn as thirdsg.

Nonlocal feature properties: All nonlocal feature lists are specified as empty.

Semantic properties: The key value is of type named rel, and the altkey value is of type
basic nom rel.

Other properties: The base lexical entries are marked as inflected:plus, and the agreement
features specify divisible:minus and pn:thirdsg. Thus, these lexical entries are not eligible
as input to the plural noun lexical rule, and so “Kims”, for example, is ungrammatical.

Examples: kim and csli

4.3.4 Partitive nouns

Head feature properties: Partitive nouns have the head value partn, and an empty mod list.

Selectional properties: They select an optional specifier with key value of type degree rel,
with o list-valued spr and comps lists, and empty que and rel lists.

Partitive nouns have empty subj lists, but they vary in their comps specifications; the
complement is either a PP[of], an NP, or nothing, but the semantics of the phrase are
the same in any case. That is, “all of the dogs” and “all the dogs” mean the same thing,
and “all” alone is implicitly partitive.

Nonlocal feature properties: Partitives have empty nonlocal feature values.

Semantic properties: The key value of the partitive noun is of type part of rel, while its
altkey value is of type quant or wh rel, which are the first two elements of liszt,
respectively. Semantic similarity regardless of selectional difference is encoded via the

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 72

synsem-valued keycomp feature specification. The value of keycomp is a phrasal non-
optional non-predicative synsem with head value prep and a key value of type x of rel,
which is structure-shared with the partitive noun’s compkey value (rather than the key
value of the complement itself).

Other properties: Marked as lexical and inflected.

PP[of] no-agreement partitives (@n part ppof noagr le)

Selectional properties: These nouns select a non-optional complement with a head value of
type prep specified as prd:minus, with an o list-valued comps list, an empty slash list,
and a key value of type x of rel. These specifications are structure-shared with keycomp.

Examples: none and many

PP[of] agreement partitives (@n part ppof agr le) These nouns look like PP[of] non-
agreement partitives, with this additional requirement:

Other properties: The agr feature values for divisible and pn be structure-shared with
those of the complement.

Examples: half and most

NP-complement agreement partitives (@n part npcomp agr le) These nouns look
like PP[of] agreement partitives, with the following exceptions:

Selectional properties: They select an accusative nominal complement, with o list-valued
subj and spr lists and an empty comps list. This complement must be specified as mo-
bile:plus, poss:minus, strict head:plus, mood:ind or mod subj, conj:cnil, and its altkey
value must be of type explicit quant rel. This complement is not syntactically related to
the keycomp value.

Semantic properties: Since an x of rel will not be included by the complement, it is included
in the liszt of the partitive noun.

Examples: half

No-complement partitive nouns (@n part nocomp le) These nouns look like other
no-agreement partitives, with the following exception:

Selectional properties: The comps list is empty.

Examples: half and many

4.3.5 Pronouns

The base lexical entries for pronouns are marked as inflected. Pronouns have a head value
of type noun star, an empty mod list, and have empty valence lists, except where noted.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 73

Personal pronouns (@n pers pro le)

Selectional properties: Empty valence lists.

Nonlocal feature properties: All nonlocal lists are empty.

Semantic properties: Their key value is of type pron rel ; liszt contains both this rel and
one of type def rel (that is, personal pronouns are implicitly quantified).

Other properties: Personal pronouns have agreement features specified as gen:real gender
and prontype:std pron. agr is structure-shared with index.

Examples: she and them

Singular they (@n pers pro noagr le) This is the lexical class of so-called “singular
they,” which occurs in tag questions co-indexed with syntactically singular generic pronouns
like everyone, while showing a pattern of syntactically plural agreement itself. This lexical
entry is just like other personal pronouns, with the following exceptions:

Other properties: agr and index values are not structure shared. The class itself has no
agr specifications, but the index value is specified as gen:real gender. Singular they
has the agr specification pn:thirdpl star, and the index specifications gen:andro star,
pn:thirdsg star, and prontype:std 3.

Expletive pronouns look like personal pronouns, with the following exceptions:

Nonlocal feature properties: Empty nonlocal lists.

Semantic properties: key value of type no rel, and an empty liszt value. Thus, they make
no semantic contribution to a phrase.

Other properties: Structure-share agr and index values. Their gender types are subtypes
of strict gender, but not real gender.

Expletive it (@n expl it le)

Other properties: An agr value of type it ind, with the specifications gen:no gend it and
pn:thirdsg star.

Expletive there (@n expl there le)

Other properties: An agr value of type there ind, with the specification gen:no gend there.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 74

Possessive pronouns (@n poss pro le)

Selectional properties: These possessive pronouns have a nonempty spec list, the only mem-
ber of which is an anti-synsem with empty nonlocal lists.

Nonlocal feature properties: Like personal pronouns, all nonlocal feature lists are empty.

Semantic properties: The semantic content is complex – in addition to the liszt and key
specifications described for personal pronouns, possessive pronouns have an altkey value
of type basic poss rel. This reln is included on liszt along with a def np rel.

Examples: mine

Deictic pronouns (@n deictic pro le)

Nonlocal feature properties: Like personal pronouns, all nonlocal lists are empty.

Semantic properties: Deictic pronouns have a key value of type generic nom rel and an
altkey value of type demonstrative rel, both of which are included on liszt. The index
of the first is bound by the second (is its bv value). Semantically, then, the demonstrative
acts as a quantifier binding a generic (implicit) nominal.

Examples: that and these

Generic pronouns (@n generic pro le)

Head feature properties: Generic pronouns have head value of type noun.

Selectional properties: They select an optional predicative adjectival complement, with o list-
valued comps and spr lists, a non-empty subj list, and empty nonlocal lists. They also
select an optional specifier whose key value is of type degree rel, and which has empty
slash and rel lists.

Nonlocal feature properties: Their nonlocal lists are empty.

Semantic properties: Like deictic pronouns, their key value is of type basic nom rel, but their
altkey value is of type quant rel (and specified further in the individual lexical entries).
Both are included on liszt, with the quant rel binding the index of the basic nom rel.

Other properties: The agreement features are specified as gen:real gender and pn:thirdsg star.
agr and index are structure-shared.

Examples: anyone and everyone

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 75

Reflexive pronouns (@n refl pro le) Reflexive pronouns have the same specifications
as personal pronouns with the following exceptions:

Head feature properties: case value is always acc.

Other properties: The (agr feature) prontype value is refl.

Examples: myself and herself

Wh-pronouns (@n wh pro le)

Nonlocal feature properties: Wh-pronouns have a nonempty que list, but empty rel and
slash lists.

Semantic properties: Their key value is of type basic nom rel , their altkey value is of type
which rel, and both are included on liszt with the second binding the index of the first.

Other properties: Otherwise, they look like personal pronouns in terms of syntactic specifi-
cations, with the additional agreement feature specification that the value of pn is always
thirdsg star .

Examples: what and who

Free relative pronouns (@n freerel pro le)

Nonlocal feature properties: Free relative pronouns have a nonempty que list, and the single
element on that list is the value of the pronouns index feature. Furthermore, free relative
pronouns have nonempty slash lists, containing a local object specified as a nonpred-
icative noun with an empty mod list, empty subj and comps lists, and the agreement
feature specification pn:thirdsg. The rel list of a free relative pronoun is empty.

Semantic properties: Their key value is of type instance rel, their altkey value is of type
free relative ever rel, and both are included on liszt with the first binding the index of
the second.

Other properties: Otherwise, they look like wh-pronouns in terms of syntactic specifications,
with the additional agreement feature specification that the value of pn is always thirdsg.

Examples: what and whatever

Relative pronouns (@n rel pro le)

Nonlocal feature properties: In terms of syntactic specifications, relative pronouns look like
personal pronouns, except that they have a nonempty rel list.

Semantic properties: Their key value, which is structure-shared with topkey, is of type
reg nom rel, but liszt is empty.

Examples: who and which

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 76

Non-wh relative pronoun that (@n rel pro nonwh le)

Semantic properties: The non-wh relative pronoun looks like other relative pronouns, except
that the key value is of type modable nom rel.

4.3.6 Adverbial nouns

there (@n adv le)

Selectional properties: This noun looks like a pronoun, but has a nonempty spr list, whose
single member is an anti synsem with empty nonlocal feature values.

Nonlocal feature properties: Empty nonlocal lists.

Semantic properties: Their key value is of type basic nom rel , their altkey value is of type
def explicit rel, and both appear on liszt, with the second binding the index of the first.

Other properties: Specified as agr:pn:thirdsg star

Adverbial wh-nouns (@n wh adv le)

Head feature properties: Specified as case:acc.

Selectional properties: Adverbial wh-pronouns look like wh-pronouns, except that they select
an optional complement with head value wh adv and key value wh the hell rel, and their
spr list specifies an anti synsem with empty nonlocal lists.

Examples: when

Adverbial free relative pronouns (@n freerel pro adv le) Adverbial free relative
pronouns look like free relative pronouns, with the following exceptions:

Nonlocal feature properties: The slash value specifications differ from other free relative
pronouns. Here, the local object is specified as having head value of type prep, and a
nonempty mod list whose member has an index value identified with another argument
position of the prep mod rel.

Semantic properties: liszt contains an additional reln of type prep mod rel which takes the
index of the instance rel as an argument. altkey value is the same as the key value.

Examples: whenever and how

4.3.7 Determiners (@basic det synsem)

Head feature properties: As a class, determiners have the head value det , but specific
lexical entries are specified with the subtypes non part det or part det. We introduced
this distinction, not present in the erg, in place of the types part det synsem and

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 77

non part det synsem, which we have implemented as types. This distinction is used to de-
termine which determiners are eligible as input to the partitive lexical rules, which derive
partitive nouns (taking NP or PP complements) from partitive determiners. Determiners
have an empty mod value, and are specified as non-mobile.

Selectional properties: Determiners have empty subj and comps lists, but select an optional
specifier, which has empty que and rel values and a key value of type degree rel. All
determiners have a non-empty spec value, used to select the kind of thing for which a
particular class of determiner may act as specifier. In every case, the index of the spec
value is bound by the key of the determiner, via the bv feature.

Semantic properties: key value is of type quant or wh rel.

Other properties: Marked as lex:plus.

Non-partitive determiners

(Ordinary) determiners (@det le) Except where noted, the other non-partitive (non-
possessive) determiners share these specifications, but have more specific selectional require-
ments.

Head feature properties: Marked as poss:minus.

Selectional properties: The spec value is of type canonical synsem.

Nonlocal feature properties: Empty nonlocal feature values.

Semantic properties: altkey value of type no rel.

Other properties: Marked as inflected:plus. Unlike other non-partitive determiners, the value
of the feature modified inherited from spec.

Examples: the and no

Singular mass determiners (@det sm le)

Selectional properties: spec specifies something whose value of the index feature pn is spec-
ified as thirdsg star, that is, singular mass or count nouns.

Semantic properties: altkey is unspecified.

Other properties: Agreement features specify pn:thirdsg. Value of the feature modified is
hasmod.

Examples: this, that

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 78

Singular determiners (@det sg le)

Selectional properties: spec specifies something whose index value is specified as divisi-
ble:minus star and pn:thirdsg star, that is, a singular count noun.

Other properties: Agreement features specify divisible:minus and pn:thirdsg. Value of the
feature modified is hasmod.

Examples: every

Singular no-modifier determiners (@det sg nomod le)

Selectional properties: Same spec specifications as a singular determiner. spr value is an
anti-synsem.

Other properties: Same agr specifications as a singular determiner. Value of the feature
modified is notmod.

Examples: a

Plural determiners (@det pl le)

Selectional properties: spec specifies something whose value of the index feature pn is spec-
ified as thirdpl star, that is, plural nouns.

Other properties: Agreement features specify pn:thirdpl. Value of the feature modified is
notmod.

Examples: these, those

Possessive determiners (@det poss le) This class differs from other non-partitive de-
terminers in a number of respects.

Head feature properties: Marked as head:poss:plus.

Nonlocal feature properties: Empty nonlocal feature values.

Semantic properties: A complex semantic content, contributing the semantics of a personal
pronoun (the possessor), and information about the possessor-possessed relationship via
its liszt specifications. The key value is of type abstr def rel. The altkey value is of
type pro poss rel ; this rel has both the index of the spec value (the possessed) and the
inst value of the determiner’s own pronominal content as argument values.

Other properties: Specified as inflected in the lexicon.

Examples: their, its

Partitive determiners

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 79

(Ordinary) partitive determiners (@det part le) Similar to ordinary non-partitive
determiners @det le, with the following exceptions (Other partitive determiners are further
specified, as described below.):

Head feature properties: head value of type part det. Unspecified poss value.

Selectional properties: The spec list member is of type synsem min; its altkey value must
be of type basic nom rel.

Semantic properties: altkey value type is unspecified.

Examples: some, either, any

Singular partitive determiners (@det part sg le) have the agr and spec specifica-
tions of non-partitive singular determiners.

Examples: each, neither

Plural partitive determiners (@det part pl le) have the agr and spec specifications
of non-partitive plural determiners.

Examples: many, several, both

Plural-mass partitive determiners (@det part pl mass le)

Selectional properties: spec list specifies something for which the index is specified as divis-
ible:plus star, that is, mass or plural nouns.

Other properties: Agreement features are specified as divisible:plus.

Examples: most, all, more

The determiner one (@det part one le) has the selectional and agreement properties
of the other singular partitive determiners, but its semantic content is different.

Semantic properties: key value is of type udef rel ; also on liszt is a rel of type card rel
whose const rel argument has the (string-) value one.

Wh-determiners

The determiner what (@det wh le) This wh-determiner has the specifications of @det le,
with the following exceptions:

Selectional properties: The spec value is of type synsem min, and it has a non-empty que
value, specified in the lexical entry itself.

Nonlocal feature properties: que value is non-empty.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 80

The determiner which (@det part unsp le) The unspecified partitive determiner has
the specifications of @det part le, with the following exceptions:

Head feature properties: Specified as poss:minus.

Selectional properties: It lacks the requirement of other partitives that it specify something
whose altkey value is of type basic nom rel.

Nonlocal feature properties: que value is non-empty.

The determiner how many (@det part pl wh le many) The plural partitive wh-de-
terminer has the specifications of @det part pl le, with the following exceptions:

Head feature properties: Specified as poss:minus.

Selectional properties: It lacks the requirement of other partitives that it specify something
whose altkey value is of type basic nom rel.

Nonlocal feature properties: que value is non-empty.

Semantic properties: Semantic content is more complex.

The determiner whichever (@n freerel part le) The free-relative partitive noun is
a misnomer, since its head value is of type part det. Its specifications are similar to
@det part unsp le, with the following exceptions:

Nonlocal feature properties: It has a non-empty slash value (in addition to the non-empty
que value), specified as having a head value of type n or p.

Semantic properties: key value is of type free relative ever rel.

The free-relative determiner what (@det freerel le) has specifications similar to the
macro @det wh le, with the following exceptions:

Nonlocal feature properties: It has a non-empty slash value (in addition to the non-empty
que value), specified as having a head value of type n or modnp and accusative case.

Semantic properties: Its key value is of type free relative ever rel.

The possessive relative determiner whose (@det rel poss le) has specifications sim-
ilar to the possessive determiners (@det poss le), with the following exceptions:

Nonlocal feature properties: It has a non-empty rel value.

Semantic properties: It lacks the personal pronoun content in its liszt value.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 81

4.3.8 Prepositions

Prepositions have the head value prep star. They are specified as lex:plus star, inflected:plus,
and posthead:plus.

Regular prepositions (@p reg le)

Head feature properties: Regular prepositions have a mod value which specifies that they
modify something with a local value of type intersective mod, a head value of type
n or v, strict head:plus, with an o list-valued comps value, and a non-empty spr value,
of type synsem min, and a key value of type quant or deg rel.

Selectional properties: Regular prepositions select an nominal subject, specified as poss:minus,
strict head:plus, mood:ind or mod subj, and mc:na or minus. The subject must have
o list-valued subj and spr lists, an empty comps list, and empty nonlocal feature values.

They select an optional adv specifier, with o list-valued spr and comps lists, an empty
que list, and a key value of type very deg rel.

They select a non-optional accusative nominal complement, specified as mobile:plus,
poss:minus, strict head:plus, mood:ind or mod subj, and mc:na or minus. The subject
must have o list-valued subj and spr lists, an empty comps list, and empty nonlo-
cal feature values. This complement must have a key value of type non temp nom rel,
which is structure-shared with the compkey value of the preposition.

Semantic properties: The key value of a regular preposition is of type basic prep mod rel.

Examples: on, to

(Ordinary) prepositions (@p le) Prepositions in this class are identical to regular prepo-
sitions, except there is no restriction on the key value of the (non-optional) complement.

Examples: for, with, before

No-specifier prepositions (@p nospec le) are similar to @p le, with the following ex-
ceptions:

Head feature properties: mod list specifies something with a with a key value of type
never unify rel. This effectively prohibits a PP headed by such a preposition from func-
tioning as an adjunct. Specified as aspect:noasp and progr and tense:no tense.

Selectional properties: The spr list member is of type unexpressed.

Other properties: Values of the agreement features divisible and pn are structure-shared
with those of the complement.

Examples: of

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 82

No-specifier no-gap prepositions (@p nospec nogap le) look like no-specifier prepo-
sitions (@p nospec le) with the following exceptions:

Head feature properties: No restriction on key value of the mod list item (thus, these
prepositions can act as modifiers).

Selectional properties: Complement must have an empty slash list.

Other properties: No agreement feature structure-sharing with complement.

Examples: but

Idiomatic no-modifier prepositions (@p idiom nomod le)

Head feature properties: Empty mod list. Specified as prd:minus.

Selectional properties: The same spr and comps specifications as @p le. Empty subj list (a
nonempty list is necessary only for prepositions which can be predicative).

Semantic properties: key value is of type prep rel.

Examples: (passive) by

Comparative than (@p compar than le)

Head feature properties: Specified as prd:minus. mod list specifies something with head
value of type adj, with a spr specification whose key value is of type much deg rel, and
an altkey value of type comp rel.

Selectional properties: Selects a nominal subject specified as poss:minus, strict head:plus,
mood:ind or mod subj, mc:na or minus, and conj:cnil. The subject must have o list-
valued spr and subj lists, and an empty comps list. It selects a non-optional noun
complement, with o list-valued spr and subj lists, an empty comps list, and empty
nonlocal feature lists. It has an empty spr list.

Nonlocal feature properties: Empty nonlocal feature lists.

Semantic properties: key value of type x compar than rel.

Temporal prepositions (@p temp le) look like @p le with the following exceptions:

Selectional properties: The nominal complement has unspecified mobile message, and
mood feature values. The complement is specified as mc:na and comps:o list.

Examples: at, on

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 83

The preposition a (@p nbar comp nmod le) In erg, the a in “three times a day” is
analyzed as a preposition. This preposition is similar to @p le, with the following exceptions:

Selectional properties: Most importantly, the complement is lexical, a thirdsg noun with an
o list-valued comps list, an unexpressed specifier, an empty slash list, and an altkey
value of type no rel. This complement is specified as modified:notmod, periph:na or minus.
The subj list specifies an anti synsem. The specifier must have an empty slash list.

No-noun modifying prepositions (@p no n mod le) are identical to @p le with the
following exceptions:

Head feature properties: mod list specifies something with a non-empty subj list. This rules
out nouns, which always have empty subj lists.

Examples: until

Subordinating conjunctions (@p subconj le)

Head feature properties: head value is of type prep. Specified as prd:minus. mod list
specifies something with a local value of type scopal mod, a head value of type verb,
specified as mobile:minus, strict head:plus, with o list-valued comps and subj lists, a
singleton message list, and an empty slash list.

Selectional properties: Empty subj and spr lists. comps list specifies a non-optional finite
clause: a head value of type verb, specified as non-inverted, finite, mc:plus, with o list-
valued subj and comps lists, a message list containing a prpstn rel, and empty nonlocal
feature values

Nonlocal feature properties: All nonlocal lists are empty.

Semantic properties: The key value is of type subord rel, the message list contains a prp-
stn rel. Both of these rels are members of liszt.

Other properties: The mc value of the preposition is structure-shared with that of the mod
value.

Examples: although, when, as soon as

Predicative subordinating conjunctions (@p subconj prd le) look like subordinating
conjunctions (@p subconj le), with the following exceptions in terms of selectional and mod-
ifying properties.

Head feature properties: Additional specifications in mod: a vform value of type fin or imp,
mood:ind or mod subj, and mc:plus. Thus, these prepositions modify finite or imperative
clauses. The agr feature value specified in mod is structure-shared with the index value
of the complement’s unexpressed subject.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 84

Selectional properties: Non-optional predicative complement, specified as strict head:plus
and tense:no tense. This complement must have o list-valued spr and comps lists, a
non-empty subj whose member is of type unexpressed reg, and empty nonlocal feature
lists.

Semantic properties: liszt contains an additional element of type hypo rel.

Examples: when

Infinitive subordinating conjunctions (@p subconj inf le) look like predicative sub-
ordinating conjunctions, but their selectional properties are different. PPs headed by these
“prepositions” look like infinitive VPs; these are what are often called rationale infinitives,
or in order clauses, in the literature.

Selectional properties: Complement has a head value of type verb, specified as non-inverted,
non-mobile, non-predicative, indicative, and having the vform specification bse only.
The subj and spr list of this complement are non-empty, specifying something of type
unexpressed, and the message list must be empty.

Semantic properties: liszt contains two additional elements, one of type def rel, the other
of type pron rel, representing the subject of the complement.

Examples: in order to, to

Indicative if (@p subconj if indic le) differs from predicative subordinating conjunc-
tions (@p subconj prd le) primarily in its selectional properties.

Selectional properties: It selects three complements. The first is an optional complement,
with a head value of type prep or modnp, a non-empty mod value specifying something
with a local value of type intersective mod, and an empty comps list. The second (non-
optional) complement is a nominative nominal with o list-valued subj and spr lists, an
empty comps list, and an empty slash list. The third (non-optional) complement is
verbal, finite, with an o list-valued comps list, a non-empty subj list, and an empty mes-
sage list. The agr value of the NP complement is structure-shared with the agr value of
the subject of the VP complement, enforcing agreement between the two. Furthermore,
the mood specification of the VP complement is structure-shared with the mood of the
mod value.

CP-complement prepositions (@p cp le) look like @p le, with the following excep-
tions:

Selectional properties: Select a complement with a head value of type verb, specified as non-
inverted, non-mobile, finite, mood:strict ind or mod subj, tense:real tense, and mc:minus,
with an o list-valued comps list and a message list containing a prpstn rel.

Semantic properties: The value of the arg3 position in the key value is the (event-)index
of the CP.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 85

Examples: until, after

PrdP-complement prepositions (@p prdp le) These prepositions look like @p le, ex-
cept for the comps specifications.

Selectional properties: The head value of the complement is left unspecified, but it must be
specified as prd:plus and tense:no tense, with an o list-valued comps list, a non-empty
subj list, and empty nonlocal feature lists.

Examples: as

Phrasal prepositions are specified as lex:minus (except where noted), have empty comps
lists, and empty nonlocal lists except where noted.

Ordinary phrasal prepositions (@pp le) look like regular prepositions (@p reg le) with
the exceptions noted above and below. This is the lexical class of particles.

Head feature properties: mod list specifies something which is not a clause, that is, specified
as mc:na and message:[], and is specified as modified:notmod or rmod. Otherwise the
mod specification looks like that of a regular preposition.

Semantic properties: key value is of type glbtype1036.

Examples: off

Relative prepositions (@pp rel le) differ from ordinary phrasal prepositions in the fol-
lowing respects.

Head feature properties: Specified as prd:plus. mod list specifies a VP: something with a
head value of type verb which is non-inverted and non-mobile, with non-empty subj and
spr lists. The specifier must have a key value of type quant or deg rel.

Selectional properties: They select an (optional) specifier with a key value of type degree rel.

Nonlocal feature properties: Non-empty rel value.

Semantic properties: key value is of type glbtype910.

Examples: where, when

Wh-prepositions (@pp wh le) differ from ordinary phrasal prepositions in the following
respects.

Head feature properties: mod specifies something with a head value of type verb or gerund.

Nonlocal feature properties: Non-empty que value.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 86

Semantic properties: key value is of type temp abstr rel, altkey value is of type nom rel,
and liszt also contains a which rel.

Other properties: Specified as lex:plus star.

Examples: how

4.3.9 Adjectives (@basic adj synsem lex or phrase)

Head feature properties: Adjectives have a head value of type adj star.

Selectional properties: They select an optional specifier with a key value of type degree rel,
an empty slash list, and an o list-valued spr list. They also select a nominal subject,
specified as poss:minus, strict head:plus, and tam:ind or mod subj. The subject must
have o list-valued subj and spr lists, and an empty comps list.

Semantic properties: key value of type basic adj rel.

Other properties: Adjectives structure-share their agr value with the agr and index values
of their subject, and are specified as stemhead:astem.

4.3.9.1 Modifying adjectives

Intransitive adjectives (@adj intrans le)

Head feature properties: mod specifies something with a head value of type noun, specified
as poss:minus and strict head:plus, with empty subj and comps lists, but a non-empty
spr list, containing a synsem with a key value of type quant or deg rel.

Selectional properties: Empty comps list.

Semantic properties: key value of type abstr adj rel, and an empty message list. index
value is structure-shared with the value of agr, as well as the index values of both the
subject and the thing modified.

Other properties: Specified as conj:cnil and posthead:minus. Base lexical entries are marked
lex:plus star and inflected:minus.

Examples: old, trustworthy

Comparative adjectives (@adj comp le) look like intransitive adjectives with the fol-
lowing exceptions:

Selectional properties: The specifier must have a key value of type much deg rel.

Semantic properties: altkey value is of type comp rel, and included on liszt.

Other properties: Base lexical entries are marked as inflected:plus.

Examples: older, harder

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 87

Superlative adjectives (@adj superl le) look like intransitive adjectives with the fol-
lowing exceptions:

Head feature properties: Non-predicative (prd:minus).

Selectional properties: The specifier must have a key value of type very deg rel.

Semantic properties: altkey value is of type superl rel, and is included on liszt.

Other properties: Base lexical entries are marked as inflected:plus.

Examples: oldest

The adjectives more and less (@adj more less le) look like comparative adjectives
with the following exceptions:

Selectional properties: Both the subject and specifier are unexpressed (and opt:plus). comps
list specifies a non-optional lexical adjectival complement, with an empty comps list, an
o list-valued spr list, and a non-empty subj specification which is structure-shared with
the adjective’s own subj list.

Semantic properties: The key value is of type more less adj rel.

The adjectives most and least (@adj most least le) look like @adj more less le with
the following exceptions:

Selectional properties: The key value of the (unexpressed) specifier is of type very deg rel.

Semantic properties: The key value is of type most least adj rel, and the altkey value is of
type super rel.

Ordinal adjectives (@adj bare unspecified ord le)

Head feature properties: head value of is type intadj, specified as ordinal:plus and prd:minus.
mod list specifies something with a head value of type noun, specified as divisible:plus star
(that is, a mass or plural noun), having empty subj and comps lists, and a non-empty
spr value, specifying something with a key value of type quant or deg rel. The key value
of the modified thing must be of type nonpro rel.

Selectional properties: Empty subj and comps lists, selecting only an optional specifier with
a head value of type adv , o list-valued comps and spr lists, and a key value of type
degree rel. spec is also non-empty.

Nonlocal feature properties: Empty nonlocal feature values.

Semantic properties: key value is of type ord rel, and is structure-shared with altkey.

Other properties: Base lexical entries are marked as lex:plus star and inflected:plus.

Examples: first

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 88

Cardinal adjectives (@adj bare unspecified card le) differ from ordinal adjectives
only in that they are specified as ordinal:minus, and their key value is of type card rel.

Examples: two, thirty

4.3.9.2 Non-modifying adjectives

CP[that] adjectives (@adj reg atrans that cp le)

Head feature properties: Specified as prd:plus. mod list specifies something with a head
value of type no head.

Selectional properties: subj and spr specifications like those of intransitive adjectives, except
that the subject’s index value must be of type it ind. comps list specifies a non-optional
verbal complement, specified as inv:minus, mood:strict ind or mod subj, tense:real tense,
vform:fin or inf, mc:minus, having o list-valued valence lists, and a non-empty message
list, specifying a prpstn rel. The member of the comps list is also the value of the feature
keycomp.

Semantic properties: The key value is of type adj arg4 rel. The complement’s key value is
structure-shared with compkey.

Examples: true

Wh-adjectives (@adj wh le)

Head feature properties: Empty mod list.

Selectional properties: Empty spr and comps lists. subj list specifies a nominal subject like
that of any adjective.

Nonlocal feature properties: que is non-empty; rel and slash are empty.

Semantic properties: key value is of type prpstn to prop rel. Semantic content is complex.
message list is empty.

Other properties: Specified as posthead:plus and mc:na. Base lexical entry is specified as
lex:plus star and inflected:plus.

Examples: how

4.3.10 Degree specifiers (@adv degree spec le)

Head feature properties: head value is of type adv , and mod list is empty.

Selectional properties: Empty subj and comps lists. They select an optional specifier, also
with a head value of type adv and a key value of type degree rel. This optional specifier
also must have an o list-valued spr list, and an empty que list. spec list specifies
something with an altkey value of type non conj rel.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 89

Nonlocal feature properties: nonlocal feature lists are empty.

Semantic properties: key value of type degree rel. message list is empty.

Other properties: Specified as mc:na, conj:cnil, and inflected:plus. The value of the modified
feature is of type xmod, specified as periph:na.

Examples: very, almost, only

Titles (@n title le)

Head feature properties: head value adv . mod list specifies a canonical synsem with a head
value of type noun, specified as poss:minus, strict head:plus and modified:notmod or rmod,
with empty subj and comps lists, and a non-empty spr list containing something with a
key value of type quant or deg rel. More importantly, the mod value specifies something
with a key value of type abstr named rel.

Selectional properties: Empty valence lists.

Nonlocal feature properties: Empty nonlocal feature lists.

Semantic properties: key value of type instance rel. liszt also contains a udef rel and a
title id rel.

Other properties: Specified as posthead:minus. The base lexical entries of titles are specified
as lexical and inflected.

Examples: mr

Post titles (@n post title le) differ from (pre-) titles only in their specification as post-
head:plus, and hc lex:minus star.

Examples: esq

4.3.11 Conjunctions (@conj word)

Conjunctions inherit a number of feature values from the first element on the comps list, as
described below.

Head feature properties: head feature value structure-shared with first complement.

Selectional properties: Conjunctions select one non-optional complement. The comps of
that complement is the rest of the conjunction’s comps list (that is, the complements are
inherited). spr and subj are also inherited from the first complement.

Semantic properties: The values of key and message are inherited from the first comple-
ment.

Other properties: Conjunctions are specified as inflected:plus. The values of the features
lex,divisible, hc lex and mc are inherited from the first complement.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 90

Complex conjunctions (@conj complex le)

Semantic properties: altkey value is of type conj rel and is the sole member of liszt. The
index value is of type conj ind. The value of h cons is the empty list.

Other properties: specified as conj:lex conj.

Examples: and, or, nor, but

Atomic conjunctions (@conj atomic le)

Selectional properties: The first complement must be specified as conj:cnil.

Semantic properties: Both liszt and h cons are empty.

Other properties: conj value is atomic conj.

Examples: either, neither, both

4.4 Lexical Rules

4.4.1 Inflectional Lexical Rules

Singular nouns sing noun infl rule keeps morphology constant. The output has a spr
value whose agr feature value specifies pn:thirdsg and divisible:minus. It is specified as
stemhead:countnstem, and its index value specifies pn:thirdsg star, gen:neut star, and di-
visible:minus star.

Mass nouns mass noun infl rule keeps morphology constant. The output has a spr value
whose agr feature value specifies pn:thirdsg and divisible:plus. It is specified as stem-
head:massnstem, and its index value specifies pn:thirdsg star, gen:neut star.

Plural nouns plur noun infl rule adds an affix to the input phonology. The output has
a spr value whose agr feature value specifies pn:thirdpl and divisible:plus. It is specified
as stemhead:count or masscount nstem, and its index value specifies pn:thirdpl star, and
divisible:plus star.

4.4.2 Derivational lexical rules

4.4.2.1 Partitive lexical rules

derive partitive nouns from so-called partitive determiners: those that have the head value
part det, with a key value of type quant or wh rel.

The partitive construction lexical rules specify that the key value of the input is the
altkey value of the output, that the derived lexical entry inherits the divisible and non-
local specifications of the input, and that the key value of the derived lexical entry is
structure-shared with the head of c cont — liszt (otherwise it would not appear on the

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 91

liszt value of the derived partitive noun, given the way that liszt feature amalgamation is
formulated for lexical rules).

part nocomp constr This lexical rule derives partitive nouns with empty comps lists,
licensing things like “many sleep.” The key value is specified as part of rel. Since there are
no agreement specifications on the noun, things like “many sleeps” are also licensed.

There are two lexical rules that derive partitive nouns selecting for a PP[of] complement.
Both specify that the keycomp value is structure shared with the only element on the
comps list. The key value is of type part of rel, and it has an argument whose value is the
index which is also the value of the complement’s key value (that is, the index of the NP
complement of the PP[of]).

part ppof agr constr This lexical rule derives partitive nouns whose agreement feature
specifications are determined by the NP complement of of. Specifically, its pn and divisible
specifications are structure-shared with those of the keycomp value.

The input to this lexical rule must have a key value of type explicit quant agr rel. It
structure-shares its divisible specification with the input’s keycomp. . .divisible specifica-
tion, and structure-shares its pn specification with its own keycomp . . .pn specification.

part ppof noagr constr This lexical rule derives partitive nouns whose agreement fea-
tures are inherited wholesale from the input, whose feature key must have the value ex-
plicit quant or udef noagr rel.

partitive num was originally a non-head-only phrasal type, but we changed it to a lexical
rule.

4.4.2.2 month det

This lexical rule takes nominal month lexical entries (as in “the first of january”) and derives
determiners that function as specifiers for the day-of-month in phrases like “january first”.

The input to this lexical rule has a key value of type mofy rel (referring to month-of-year),
selects for a single optional complement, and is specified as stemhead:nstem.

The derived lexical entry inherits its compkey, ocompkey, and nonlocal values from
the input. The key value of the input is the altkey value of the output. The key value
of the derived lexical entry must be of type def rel and is included in the semantics of the
lexical entry via c cont (as are two additional s).

The derived lexical entry has a head value of type det , and empty valence lists except
for spec, the member of that list has a key value of type dofm rel (day-of-month) and an
index value structure-shared with its own.

4.4.2.3 dofm yofc

The input of this lexical rule is specified by the macro @dom ord synsem, but the only
specifications shared between input and output are those dictated by a general description
of lexical rules, and constraints on lexical rule types. The input to this lexical rule, then,
should contribute a single rel of type dofm rel to the semantics of the output; the only lexical

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 92

headed_phrase *>
(root:minus,
synsem:local:(cat:(head:Head,

hc_lex:Hclex),
agr:Agr,

conj:Conj,
keys:key:Key),

head_dtr:synsem:local:(cat: (head:Head,
hc_lex:Hclex),

agr:Agr,
conj:Conj,
keys:key:Key)).

Figure 4.19: The Head Feature Principle

entries meeting this condition are the nominal day-of-month lexical entries, such as “first”.
These base lexical entries select an optional PP[of] complement that specifies month, and
optionally year, as in “the first of january 1984.”

This lexical rule derives day-of-month lexical entries that select a non-optional month-of-
year specifier, and a non-optional year-of-century complement, as in “january first 1984.”

The derived lexical entry has a head value noun, and is specified as prd:plus. Its specifier
has a head value det , an altkey value of type mofy rel, and a key value of type abstr def rel.
The lexical entries derived via the month det lexical rule satisfy this description. Its single
complement has a head value of type nominal and a key value of type yofc rel.

4.5 General Principles

4.5.1 The Head Feature Principle

The Head Feature Principle (HFP) is located on a constraint on the type headed phrase, as
shown in figure 4.19. Basically, any kind of mother with any kind of daughter(s) may be
licensed in the current incarnation of the merge grammar.1 This is true of any phrase not
a subtype of headed phrase.

4.5.2 Slash Amalgamation

The principles necessary for the lexical amalgamation of the nonlocal features are discussed
in section 2.1.1.2.

1This aspect of the grammar is inherited from the erg grammar, and will ideally not be maintained in
future milca grammars (except possibly in the case of coordination), as it runs counter to a fundamental
idea of hpsg.

CHAPTER 4. DESCRIPTION OF THE COMPONENTS OF THE GRAMMAR 93

head_nexus_rel_phrase macro (headed_phrase,
synsem:nonlocal:rel:Rel,
head_dtr:synsem:nonlocal:rel:Rel).

head_nexus_phrase macro (@head_nexus_rel_phrase,
@head_nexus_que_phrase).

head_valence_phrase macro (@head_nexus_phrase,
synsem:nonlocal:slash:Slash,
head_dtr:synsem:nonlocal:slash:Slash).

Figure 4.20: Nonlocal Feature Inheritance

4.5.3 Nonlocal Feature Inheritance

The requirement that a slash value be shared between mother and head daughter is located
in the macro @head valence phrase. Any phrase not specified as satisfying this description
does not inherit a slash value from its head daughter unless the schema licensing it ex-
plicitly specifies such structure sharing. Similarly, the requirement that a value be shared
between mother and head daughter is located in the macro @head nexus rel phrase. Since
@head nexus rel phrase is a “super-macro” of @head valence phrase, any phrase specified as
satisfying the latter must also satisfy the former. The merge does not require any special
mechanism (such as to bind) to “cancel” something off a slash list; instead, the relevant
phrase must simply not be specified as satisfying the description @head valence phrase, and
the nonlocal feature values on mother and daughter(s) should be specified explicitly.

Chapter 5

Phenomena and how they are
licensed

5.1 The nominal domain

5.1.1 Simple noun phrases

Noun phrases consisting of a determiner and a noun (or N’) are instances of head-specifier
phrases, wherein the determiner and the noun co-select each other via the spec and spr
features.

Both daughters in the head-specifier phrase must be inflected. While the base lexical
entries of determiners are marked as such, the base lexical entries of (most) nouns are not.
This means only derived lexical entries, the output of the singular-, mass-, or plural- noun
lexical rules, are eligible to combine with a determiner to form an NP. Base lexical entries
which are specified as plural, such as staff, are an exception to this, since these lexical entries
do not undergo inflection by lexical rule, and are marked as inflected in the lexicon. However,
since inflectional lexical rules only take lex:minus input, this setup necessitates the inclusion
of a second uninflected base lexical entry for staff in order to license the plural form staffs.

Furthermore, the head-specifier phrase specifications require that the head daughter have
an o list-valued comps list, meaning that the noun must have already combined with its
complement, or not at all. Nothing prevents the noun from having undergone modifications.
(In these cases, the determiner combines a so-called N’, not a noun.)

The resulting NP inherits its agr, head, val feature, key and altkey values from the
head daughter, the N’.

In terms of the specifics of co-selection between the determiner and the noun, nouns
require that their specifier be a determiner with saturated valence lists, and that its agr
specifications be related to its own, though not token-identical. That is, the noun’s agreement
features will have values which allow coordination (and unify with other values), and these
specifications are also those of the NP. Not so the spr specifications, since this would allow
unification with any value. For example, the (derived) lexical entry for dog is specified (under
agr) as divisible:minus star, and pn:thirdsg star, but the spr value specifies divisible:minus,

94

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 95

and pn:thirdsg. The distribution of the is not restricted with respect to agreement, but other
determiners do have restricted distributions.

For example, a is specified as pn:thirdsg, allowing it to occur with singular count and
mass nouns, but not plural nouns. These is specified as pn:thirdpl, allowing it to occur with
plural nouns, but not singular count or mass nouns. All is specified as divisible:plus, allowing
it to occur with mass and plural nouns, but not singular count nouns.

5.1.2 Prenominal modification

Prenominal modification is always an instance of adj n int phrase. These phrases are headed
by the nominal daughter, but modifiers select the thing they modify via the mod feature.
Again, both daughters must be inflected; in the case of the adjective, this means being the
output of the positive-adjective lexical rule, unless the base lexical entry is a comparative or
superlative form, which are marked as inflected in the lexicon. I assume this rule is included
because originally comparative- and superlative- lexical rules were also meant to be included;
this is not now the case.

In any case, prenominal modifiers only modify nouns that have already combined with
their complements, but have a non-empty spr list. This rules out the possibility of having
the head daughter of an adj n int phrase be an NP, as in *good [the dog].

In order to pre-modify, the adjective must be specified as prd:minus and posthead:minus.
These requirements rule out pre-modification by (most1) adjectives which have combined
with complements, or which are post-modified. For example, there is a lexical entry for true
which selects a clausal complement, and is specified as prd:plus, which rules out *the true
that dogs sleep belief. On the other hand, older is specified as prd:minus and posthead:minus,
allowing an older dog, but the hadj i h rule, which licenses post-modification like older than
that dog specifies that the mother be marked as posthead:plus, which then rules out *an
[older than that dog] dog.

Numerals, both cardinal and ordinal, are adjectives in merge. Thus, the first dogs and
the five dogs are instances of prenominal modification. merge blocks recursive modification
by cardinal and ordinal numbers, however, by use of the modified feature. In an adjn i
construction (adjective-noun intersective), the modified value of the mother is inherited
from the non-head daughter. Since five and first are specified as modified:periph:plus, then,
so are five dogs and first dogs. Furthermore, both five and first specify in their mod feature
values that they will only modify something specified as modified:periph:na. This rules out
ungrammatical examples like *the five five dogs, but also grammatical examples like the first
first dogs and the first five dogs.

(40) a. the first good dogs
b. the good first dogs
c. the five good dogs
d. the good five dogs
e. the good good dogs
f. the good dog

1More and most are exceptions to this generalization.

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 96

g. * the five dog

Since most adjectives, like good, are specified as modified:periph:na, and leave the mod-
ified feature unspecified in their mod value, all of the grammatical examples in (40) are
licensed. Cardinal number adjectives are required to modify things where the agreement
feature pn is specified as thirdpl, which rules out examples like (40g).

5.1.3 Degree specifiers of determiners, adjectives, and other speci-
fiers

Determiners, adjectives and specifiers all select optional adverbial degree specifiers via the
spr list, to license things like [only the] DetP older dog, the [very old] AdjP dog, and the
[[very very] AdvP old] dog. These are all head-specifier constructions, and the particulars of
selection are primarily semantic, via the key feature.

For example, the requires only that its specifier have a key value of type just only degree rel,
while old requires its specifier to have a key value of type very degree rel, and very requires
that its specifier have a head value of type adv and a key value of type degree rel.

5.1.4 Possessives

merge covers the possessive constructions in (41).

(41) a. her dog
b. Kim’s dog
c. the manager’s dog
d. the manager who hired me’s dog
e. * me’s dog

Each of the possessives above is either a determiner lexical item, or a determiner phrase.
Possessive pronouns are non-partitive determiners with specific pronominal person-number-
gender information. The possessive morpheme ’s (and its orthographic variant ’) selects
a non-optional specifier that is either a noun or an NP, forming the possessive determiner
phrase. This phrase has the same selective properties as other determiners.

5.1.5 Special kinds of noun phrases

5.1.5.1 Pronominal expressions

Referring pronominals The merge lexicon includes both personal and reflexive pro-
nouns, covers their distribution with respect to case, but since the grammar does not include
an implementation of any binding theory, the distribution of personal vs. reflexive pronouns
in English is not covered. This is reflected in the examples in (42) which are licensed or ruled
out by the grammar.

(42) a. She sleeps.
b. They sleep.

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 97

c. * Her sleeps.
d. Kim visited her.
e. * Kim visited she.
f. Kim showed the office to her.
g. * Kim showed the office to she.
h. She visited herself.
i. * He visited herself.
j. * Herself sleeps.

Expletives To license sentences with the expletive there, such as (43), a special lexical
entry for the verb be is used. This lexical entry has two elements on its comps list, an
accusative NP and some kind of phrase.

(43) There is a bookcase in the office.

One would think these two complements exist in order two license the NP a bookcase and
the PP in the office in (43) as the two complements of the verb is. But instead, only the NP is
realized as a complement, the PP is realized as an adjunct with the help of the hadj i uns aux
rule. The second complement remains as an unexpressed synsem on the comps list of is.
There does not seem to be any construction where the optional complement of this kind of
be is used.

5.1.5.2 Names

All of the name expressions in (44) are licensed in merge.

(44) a. Kim
b. Browne
c. Mr. Browne
d. Kim Browne

All name expressions are licensed (at the top level) by the unary proper np rule. First and
last names are syntactically identical (though certain first names have gender specifications
included in their lexical entries). First + last name combinations, as in (44d), are just
instances of np-noun compounds, but title + last name combinations, as in (44c) involve
prenominal modification by the title. Thus, Mr, though it has a head value of type adv , has
a mod value specifying that it must modify an N’ with a key value of type abstr named rel.

5.1.5.3 Date expressions

merge licenses a variety of date expressions; the variation illustrated in (45) is accomplished
by a combination of lexical variation (both in terms of base and derived lexical entries) and
optional complementation. However, the grammar does rule out ungrammatical examples
like (45h).

(45) a. the first of January (of) 1984

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 98

b. the first of January
c. the first
d. January first 1984
e. January first
f. January 1984
g. January of 1984
h. * first 1984
i. 1/3/1984

The lexical head of the NPs in examples (45a)-(45c) is a the base lexical entry of first,
which has a head value of type dofm rel. This lexical entry selects an ordinary specifier and
an optional PP[of] complement, whose compkey value must be of type mofy rel—that is,
an NP headed by a month noun like January.

There are two lexical entries for January which fit the bill. Both select ordinary specifiers,
but one selects an optional NP complement with a key value of type yofc rel (45f), and the
other selects an optional PP[of] complement with a compkey value of type yofc rel (45g).
1984 has a head value of type noun and a key value of type yofc rel. Since both january and
1984 are proper nouns, they are licensed as specifier-less NPs by the unary rule proper np.

In (45b) the optional complement of january is not realized, and in (45c) the optional
complement of first is not realized. In (45a) both complements are realized.

On the other hand, the lexical head of the NPs in examples (45d) and (45e) is a lexical
entry for first derived from the one discussed above by the lexical rule dofm yofc. This
derived lexical entry selects a specifier with a head value of type det and a altkey value of
type mofy rel, and it selects an optional NP complement with a key value of type yofc rel.
In these examples, january is a determiner; the lexical entry is derived from the nominal
version by the lexical rule monthdet. Since first cannot be licensed as a specifier-less NP, the
ungrammatical (45h) is ruled out.

Finally, the lexical head of (45i) is a base lexical entry for three, which has a head value of
type noun and a key value of type dofm rel. This lexical entry selects a non-optional specifier
with a head value of type det and an altkey value of type mofy rel—that is, the derived
lexical entry for january discussed above. Three also selects an optional NP complement
with a key value of type yofc rel.

Note that date expressions are somewhat idiosyncratic in that separate lexical entries for
all ordinal and cardinal numbers 1-31 are needed in the lexicon for this analysis to be fully
implemented.

5.1.5.4 Temporal modifying NPs

merge licenses temporal NPs as modifying expressions with the non-headed unary temp nwh
rule. In this construction, the daughter is an N’ with a key value of type modable rel, while
the mother has a head value of type mod np and a non-empty mod value, specifying that
the phrase can modify a VP or an N’.

(46) a. Kim sleeps [three times a day].
b. Kim sleeps [every day].

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 99

c. Kim slept [Monday].
d. Kim slept [January first].
e. * Kim slept [the dog].

This rule licenses the NPs in (46a)-(46d) as modifying expressions, since they are headed
by nouns with a key value of type modable rel, but it does not license a dog as such.

Example (46a) deserves further attention, because of its idiosyncratic analysis in merge.
Three times a day is a bare NP; its lexical head is times, three is a prenominal modifier, and
a day is a postnominal modifier. merge includes a lexical entry for a which is a preposition.
This preposition can only modify an N’, but there are no semantic restrictions on either its
complement NP or the N’ it modifies. Furthermore, it selects a specifier with a key value of
type very deg rel. As it is currently implemented, the inclusion of this lexical entry has the
result that merge licenses the ungrammatical, or at least very strange, NP a dog very a day.

5.1.5.5 Partitive constructions

In merge, the variation in (47) is licensed by positing a number of different lexical entries,
some being base lexical entries, some being derived via lexical rules. In (47a), which does
not have a partitive meaning, all is a determiner specifying the lexical head dog. All is called
a partitive determiner (a determiner whose head value is of type part det) only because its
lexical input is admissible input to the lexical rules that derive partitive nouns.

Partitive nouns express partitive meaning, implicitly or explicitly, depending on whether
they have a complement or not. They are the lexical head of the NP they occur in, and select
either a PP complement (47b), no complement (47c), or (in some cases) an NP complement
(47d).

(47) a. All dogs sleep.
b. All of the dogs sleep.
c. All sleep.
d. All the dogs sleep.

Partitive determiners: any, some, either, few, many, several, both, most, all, more,
enough, each, one. (With specific agreement properties.) Lexical rules derive two nomi-
nal lexical entries from each of these determiners: one which does not select a complement
(part nocomp constr), and one which selects a PP[of] complement (part ppof agr constr or
part ppof noagr constr, depending on the key value of the partitive determiner).

Partitive nouns which can select an NP complement (all), which do not occur as deter-
miners so they cannot be derived by lexical rules (none), or both (half), are included in the
lexicon as base lexical entries.

Unlike most nouns, the specifier of a partitive noun is something with a key value of type
degree rel. This licenses things like very many of the dogs, where very is the specifier of the
partitive noun many. However, this uniformity of spr values for all of the partitives over-
generates in some cases. For example, merge currently licenses the ungrammatical *very all
the dogs and *very one of the dogs.2

2NPs like this one and that one are licensed by a non-partitive nominal lexical entry for one, with standard
spr specifications for a noun.

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 100

No-agreement partitive determiners: how-many, few, many, several, both, each, and one.
Agreement partitive determiners: which, any, some, either, most, all, more, and enough.
The difference is that an agreement partitive noun structure-shares its pn value with its
complement, if one is realized. This enforces person-number agreement between the verb
that selects a partitive-headed NP and the NP that is either the complement of the partitive
noun, or embedded in its PP[of] complement. No-agreement partitive nouns simply inherit
their agr specifications from the partitive determiner input. No relationship between the
agr specifications of the partitive noun and the agr specifications of the embedded NP
is enforced. Thus, since most is an agreement partitive, merge licenses both most of the
dogs sleep and most of the dog sleeps, but not *Most of the dogs sleeps. Since many is a
no-agreement partitive specified as pn:thirdpl, merge licenses many of the dogs sleep, but
not *many of the dog sleeps. However, since no agreement relationship between partitive and
embedded NP is enforced, merge also licenses the ungrammatical *many of the dog sleep.

all but five dogs sleep
Finally, the variation shown in (48) is licensed by a combination of lexical variation and

different phrase structure rules.

(48) a. These five dogs sleep.
b. Five dogs sleep.
c. Five of the dogs sleep.

The base lexical entry for five (and all cardinal number expressions greater than one) is
an adjective. Thus both (48a) and (48b) involve prenominal modification by five, but (48a
is a head-specifier construction, and (48b) is a bare-plural NP licensed by the unary PSR
bare np. The five in (48c), however, is a partitive noun, derived from the adjective via the
lexical rule partitive num.3

Partitive numbers select specifiers similar to other partitives, so the ungrammatical *very
five of the dogs is licensed. In terms of agreement, the derived lexical entries for partitive
numbers have agr values specified as divisible:plus star and pn:thirdpl, but the value of agr
is also structure-shared with the agr value of the complement, thereby ruling out examples
like *five of the dog.

The same lexical rule takes ordinal numbers like first as input, licensing examples like
first of the dogs. The partitive number first is not specified pn:thirdpl like five is, but it is
specified as divisible:plus star, ruling out ungrammatical examples like the first of the dog,
since singular count nouns are marked divisible:minus

5.1.5.6 Compound nouns

In merge, all of the NPs in (49) involve compound noun constructions.

(49) a. her own dog
b. csli managers
c. a department office manager
d. paris france

3This lexical rule was a non-headed unary phrase in erg.

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 101

In all compounds, the right-most noun is the head of the compound, and must be lexical.
This lexical item determines the selectional properties of the whole. Complex compounds
are built up stepwise; the non-head daughter (on the left) may be a lexical noun or a proper
name NP (licensed by separate rules), but the result is always lexical.

One idiosyncratic feature of this grammar pertaining to compounds is of note. As in
ERG, own is a noun which can either occur alone or as part of a compound.

5.1.5.7 Free relatives

merge licenses both of the examples in (50) as NPs, referred to as free relative constructions.

(50) a. what you need
b. when you visited the apartment

Free relative phrases may occur as the subject or complement of a verb or preposition, as
shown in (51).

(51) a. [What you found] is sleeping.
b. I showed Kim [what you found].
c. [What you found] is in the apartment.
d. The dog is sleeping by [what you found].

Free relative phrases are licensed by a special rule; their internal structure is discussed in
section 4.2.14.5.

5.1.6 Comparative and superlative expressions

merge licenses a number of comparative and superlative expressions, in three categories:
prenominal modifiers, predicative adjective phrases, and noun phrases.

5.1.6.1 Prenominal modifiers

In merge, lexical entries for more and most select non-optional adjectival complements, to
form adjective phrases which can occur as prenominal modifiers, as illustrated by (52a) and
(52b).

(52) a. the [more competent] managers
b. the [most competent] manager

That is, since the prd and posthead values of more and most are not specified, the
phrases they head are admissible prenominal modifiers.

5.1.6.2 Predicative adjective phrases

Comparative AdjPs like (53a) and (53b) have an adjectival lexical head, augmented with
either specifiers post-modifiers that occur independently of each other.

(53) a. Kim is [(twice) as old] as Abrams

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 102

b. Kim is [older than Abrams]

For example, an adverbial lexical entry for as, with a key value of type eq degree rel, can
occur as the specifier of the adjective old. Furthermore, a lexical entry for twice, which has
a head value of type adv and a key value of type very deg rel, can occur as the specifier of
the adverb as. Taken together, this licenses the AdjP twice as old. However, the string as
Abrams is not part of the AdjP in (53a). Instead, a prepositional lexical entry for as, which
selects an NP complement, can modify any VP or N’, and here modifies the VP is twice as
old. Thus, merge also licenses the ungrammatical examples Kim sleeps [as Abrams] and the
dog [as Abrams].

On the other hand, a prepositional lexical entry for than must modify something with
a head value of type adj, and a key value of type comp rel. Thus, the PP than Abrams
modifies older in (53b).

5.1.6.3 Comparative NPs

The licensing of (54) depends on multiple lexical entries for as, which function independently
of one another.

(54) Abrams manages as many managers as engineers.

An adverbial as with a key value of type eq degree rel can function as the specifier of
the determiner many to license as many managers. A prepositional as which takes an NP
complement, can modify managers to license managers as engineers. Although this cannot
occur as an NP in English, it is licensed as such in merge.

merge cannot license comparative NPs like more programmers than engineers, however,
since the preposition than (discussed above) can currently only modify adjectives.

5.1.7 Postnominal modification

Every instance of postnominal modification in the merge is classified as a relative construc-
tion, either as a relative clause or as a reduced relative. Relative clauses are subcategorized
as either wh-relatives (which here include that -relatives), and non-wh-relatives. Non-wh-
relatives are themselves divided into the finite non-wh-relatives (commonly known as bare
relatives), and infinitive non-wh-relatives. Examples of each construction are given in figure
5.1.

Briefly, relative clauses contain a “gap site” linked semantically to the noun they modify,
and that gap may correspond to either an argument (subject or complement) or an adjunct
position in the matrix clause or an embedded phrase or clause.

Wh-relatives have a preposed wh-phrase corresponding to the gap, non-wh-relatives do
not. The term wh-phrase refers to a phrase consisting of a so-called relative pronoun alone,
or embedded in another phrase. The phenomenon of preposing a phrase containing a relative
pronoun is commonly known as pied-piping, and the merge handles these cases as well.

The matrix verb in a wh-relative or a bare relative is finite, while the matrix verb in an
infinitive non-wh-relative is an infinitive. In a bare relative, the gap cannot correspond to
the subject position of the matrix verb. Non-wh-relatives also lack an overt subject.

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 103

1. Relative clauses

(a) Wh-relatives

The dog who/which/that visited me sleeps.
The dog who/whom/which/that I visited sleeps.
I visited the apartment where the dog sleeps .
The dog to whom I showed an apartment sleeps.

(b) Non-wh-relatives

i. Bare relatives
The dog I visited sleeps.
*The dog visited me sleeps.

ii. Simple infinitival relatives
The manager to hire sleeps.
The manager to hire me sleeps.

2. Reduced relatives.

The dog visiting the apartment sleeps.

The dog in the apartment sleeps.

Figure 5.1: Example sentences containing postnominal modification

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 104

In the merge, reduced relatives do not represent a phrasal type per se, but rather a col-
lection of phrasal types including prepositional phrases and present participial verb phrases.

Coverage does not include infinitive non-wh-clauses introduced by for (e.g., the dog for
me to visit) or iterative modification by relative clauses (e.g., the dog I visited that barks).
The former are simply not included in the coverage, while the latter are explicitly ruled out
(see section (5.1.7)). However, iterative modification by reduced relatives is covered (e.g.,
the dog in the apartment visiting me), as well as modification by a relative clause when the
noun has already been modified by a reduced relative (e.g., the dog visiting me that sleeps).

Example structures In this section, examples of structures licensed by the merge are
given, with brief descriptions. In each, the subject of the clause is a noun phrase in which
the noun is modified by a relative construction. Figure 5.2 contains a wh-relative introduced
by that, with a subject gap, figure 5.3 contains a finite non-wh-relative, with a complement
gap, and figure 5.4 contains a prepositional phrase licensed as a reduced relative.

In order to license these structures, several types of phrase structure rules are needed. In
every case, some rule must license the modification itself; that is, the node labeled N which
has two daughters: one dominating a noun, the other dominating the relative construction.
In the case of a reduced relative, we do not need anything special to license the latter; as
previously mentioned reduced relative does not refer to a phrasal type, and the modifying
phrase is licensed by an ordinary phrase structure rule. In figure 5.4, for instance, the
prepositional phrase is licensed by a head-complement schema.

In the merge, relative clauses require special schemata to license both the clause itself,
that is, the S node whose sister dominates the modified noun, and extraction. Notice that
this S node in a wh-relative (figure 5.2) is binary branching, while the S node in a non-wh-
relative (figure 5.3) is unary branching; structurally, these categories of relative clause differ
in the presence or absence of a wh-phrase daughter.

Every relative clause has a daughter with a finite or infinitive verbal head, further, every
such structure dominates a node licensed by a unary branching extraction schema. These
schemata are in some sense special instances of the type of schema whose would-be non-
head daughter corresponds to the gap, be it subject, complement, or adjunct. Thus, a node
licensed by an extraction rule will always occupy the place in the structure which would
otherwise by licensed by a subject-head, head-complement, or head-adjunct schema.

Thus, in figure 5.2, the node labeled S/NP would in an ordinary clause be licensed by
a subject-head schema, while in figure 5.3 the node labeled VP/NP would in an ordinary
clause be licensed by a head-complement schema.

Finally, the preposed wh-phrase in a wh-relative clause does not rely on any special
phrase structure rule; instead, relative pronouns are included in the lexicon as pronominal
lexical items, and phrases with embedded relative pronouns are licensed by ordinary phrase
structure rules, but marked with a special nonlocal feature specification (a nonempty value)
which propagates from the relative pronoun to the mother node of the entire preposed phrase
(see section (5.2.2.1)).

Licensing postnominal modification In all cases, postnominal modifiers combine with
what is commonly known as an N’ (loosely speaking, something with a noun head value, an
empty comps list, and a nonempty spr list). That something must be a phrase (specified as

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 105

the

DET

dog

N

that

NP

visited

V/NP

me

NP

VP/NP

S/NP

S

N

NP

barks

VP

S

Figure 5.2: Postnominal modification by a wh-relative with a subject gap

the

DET

dog

N

I

NP

visited

V/NP

VP/NP

S/NP

S

N

NP

barks

VP

S

Figure 5.3: Postnominal modification by a bare relative with a complement gap

the

DET

dog

N

in the apartment

PP

N

NP

barks

VP

S

Figure 5.4: Postnominal modification by a prepositional phrase (reduced relative)

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 106

@n_adj_redrel_nontemp(HeadDtr,NonheadDtr) macro
n_adj_redrel_nontemp,
(head_dtr:(HeadDtr,

synsem:local:cat:(head:(noun,
val:comps:e_list))),

nonhead_dtr:(NonheadDtr,
synsem:(phr_synsem,

local:cat:(head:(tam:tense:no_tense,
prd:plus,
mod:(hd:(local:cat:(head:Head,

val:Val,
agr:Agr,
cont:index:Index,
keys:key:Key),

nonlocal:Nonloc,
modified:Modif),

tl:e_list),
val:subj:[unexpressed])),

nonlocal:rel:e_list))).

Figure 5.5: Macro for schema licensing modification by a nontemporal reduced relative

lex:minus), specified as prd:plus, and have a mod value consistent with the modified noun in
a variety of respects, as specified in @basic head mod phrase simple.

Such phrases are either of type n adj redrel temp or n adj redrel nontemp (involving a
so-called reduced relative), or of type n adj relcl phrase (involving a relative clause).

Modification by a reduced relative As previously mentioned, reduced relatives are not
a phrasal type per se, and unlike other relatives they have an empty rel list. In addition
to the specifications discussed above, the non-head daughter in such a phrase must have a
nonempty subj list whose sole member is of type unexpressed, and tense value no tense.
Qualified candidates include prepositional phrases and present participial verb phrases. A
simplified version of a macro describing a phrase of type n adj redrel nontemp is shown in
figure 5.5.4

Modification by a relative clause In addition to the specifications mentioned above,
modification of an N’ by a relative clause requires that the non-head daughter have a finite
or infinitive vform value, and that its subj and comps lists have a value of type o list.
This is a list all of whose members, if any, are specified as opt:plus and of type unexpressed.
The mother is marked modified:periph:plus. This blocks iterative modification by relative
clauses, since the mod value of a relative clause specifies that it will only modify things

4All such descriptions throughout the rest of the documentation do not correspond to macros in the actual
code, rather, they are simplified and collapsed descriptions for purposes of illustration.

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 107

@n_adj_relcl_phrase(HeadDtr,NonheadDtr) macro
n_adj_relcl_phrase,
(synsem:modified:periph:plus
head_dtr:(HeadDtr,

synsem:local:cat:(head:(noun,
val:comps:e_list))),

nonhead_dtr:(NonheadDtr,
synsem:(phr_synsem,

local:cat:(head:(vform:fin_or_inf,
prd:plus,
mod:(hd:(local:cat:(head:Head,

val:Val,
agr:Agr,
cont:index:Index,
keys:key:Key),

nonlocal:Nonloc,
modified:Modif),

tl:e_list)),
val:(subj:o_list,

comps:o_list))))).

Figure 5.6: Macro for schema licensing modification by a relative clause

marked modified:periph:na or minus. A simplified version of a macro describing a phrase of
type n adj relcl phrase is shown in figure 5.6.

5.2 The verbal domain

5.2.1 Complementation

5.2.1.1 Optional Complements

The treatment of optional complements is discussed in detail in section 2.1.1.3.

5.2.2 Modification

5.2.2.1 Relative Clauses

All relative clauses are non-inverted finite or infinitive clauses, specified as posthead:plus and
prd:plus. Unlike other clauses, they have a nonempty mod value.

In all cases relative clauses have a daughter with a verbal head value and a nonempty
slash list, whose value corresponds to an unrealized argument or adjunct.

Relative clauses are not headed phrases, so that slash value may be absent on the mother
(and it is). Further, a nonempty value is stipulated on the mother, while not present on the

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 108

daughter.5 Since these phrases are not subject to the HFP, various head features are passed
explicitly from daughter to mother.

Relative clauses are distinguished between wh-relatives, which are binary phrases, and
non-wh-relatives, which are unary phrases. The leftmost daughter of a wh-relative, a phrase
of type filler head rule rel, is a wh-phrase, characterized by a nonempty value. Its local
value is structure-shared with the slash value of the rightmost daughter.

The simplified macro describing a phrase of type filler head rule rel, the type for wh-
relative clauses, is shown in figure 5.7.

Non-wh-relatives include the maximally specific phrase types fin non wh rel cl (finite non-
wh-relatives, or bare relatives) , and inf non wh rel cl (infinitive non-wh-relatives, or simple
infinitive relatives). These are distinguished primarily by their vform and subj values.

The mother has empty subj and comps lists, regardless of what the daughter’s values
were (although the daughter’s comps list must be of type o list). Thus, the daughter may
be phrasal, as is the case with simple infinitive relatives with complement gaps.

A simplified version of the macro describing phrases of type fin non wh rel cl (bare rela-
tives) is shown in figure 5.8.

Relative pronouns and pied-piping The merge recognizes the relative pronouns who,
whom, which, whose, where, when and that. These lexical items are distinguished from all
others by the fact that they have a nonempty list as the value of the nonlocal feature rel.
Like other pronouns, they are specified as lex:plus, inflected:plus, and have an empty arg s
list. A partial description of the relative pronoun which is given in figure 5.9.

To account for those cases where the relative pronoun is embedded in a wh-phrase (the
phenomenon referred to as pied-piping), this nonempty rel value must be propagated to
the top of the phrase. The mechanisms responsible for such propagation are described in
section (4.5.3). Briefly, a constraint ensures that the values of everything on the arg-s list
of a lexical head are appended, and the resulting list is the value of that lexical head. The
macro @head nexus rel phrase specifies that the rel value of a head daughter is identical to
that of the mother.

5.2.3 Extraction

Extracted-argument phrases are head only phrases, so the HFP applies, and are required to
satisfy the description @head valence phrase, so nonlocal features are passed from daughter
to mother.

In every case, some valence item is specified as an object of type gap, a synsem object
whose local value is structure-shared with the element on its slash list. Previously dis-
cussed constraints and specifications ensure that this slash value ends up on the mother’s
slash list.

In a phrase of type extracted comp phrase, the first element on the comps list of the
daughter is a gap synsem. The rest of the comps list, as well as the subj and spr values,
are passed up to the mother. A simplified version of the macro describing a phrase of type
extracted comp phrase is shown in figure 5.10.

5The rel value of a relative clause is not “collected” by the noun it modifies, since the relative clause is
a modifier and does not appear on the arg s list of the noun.

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 109

filler_head_rule_rel(LDtr,RDtr) macro
filler_head_rule_rel,
(synsem:(local:cat:(head:(vform:(fin_or_inf,

Vform),
tam:Tam,
aux:Aux,
inv:(minus,

Inv),
prd:plus,
mod:(Mod,

hd:local:cat:cont:index:Index,
tl:e_list)),

val:subj:(Subj,
o_list),

posthead:plus,
cont:index:Index),

nonlocal:(slash:e_list,
rel:ne_list)),

dtrs:(hd:(LDtr,
synsem:(local:Local,

nonlocal:rel:(hd:index:Index,
tl:e_list))),

tl:(hd:(Rdtr,
synsem:(local:cat:(head:(vform:(Vform,

fin),
tam:Tam,
aux:Aux,
inv:Inv,
mod:Mod),

val:subj:Subj),
nonlocal:slash:Local),

tl:e_list)))).

Figure 5.7: Macro for schema licensing wh-relative clauses

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 110

fin_non_wh_rel_cl(Dtr) macro
fin_non_wh_rel_cl,
(synsem:(local:cat:(head:(vform:(fin,

Vform),
inv:(minus,

Inv),
prd:plus,
mod:(Mod,

hd:local:cat:(head:noun,
val:(spr:ne_list,

subj:e_list,
comps:e_list),

cont:index:Index,
keys:key:Key),

tl:e_list)),
val:(subj:e_list,

comps:e_list),
posthead:plus,
cont:index:Index,
keys:key:Key),

nonlocal:(slash:e_list,
rel:ne_list)),

dtrs:(hd:(Dtr,
synsem:(local:cat:(head:(verbal,

vform:Vform,
tam:Tam,
aux:Aux,
inv:Inv,
mod:Mod),

val:comps:o_list,
mc:plus,
keys:key:Key),

nonlocal:(slash:(hd:(synsem:local:cat:(head:noun,
cont:index:Index,
keys:key:Key)),

tl:e_list),
rel:e_list,
que:e_list))),

tl:e_list)).

Figure 5.8: Macro for the schema licensing bare relatives

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 111

(phon:[which],
synsem:(lex:plus,

local:(arg_s:[],
cat:head:noun_star),

nonlocal:rel:[index:individual]),
inflected:plus).

Figure 5.9: Partial description of which

extracted_comp_phrase(Dtr) macro
extracted_comp_phrase,
(synsem:local:cat:val:(spr:Spr,

subj:Subj,
comps:Comps),

head_dtr:synsem:(local:cat:val:(spr:Spr,
subj:Subj,
comps(hd:(gap,

nonlocal:slash:Slash),
tl:Comps),

nonlocal:slash:Slash)).

Figure 5.10: Macro for the schema licensing complement extraction

Phrases of type extracted subj phrase fin or extracted subj phrase inf have empty valence
lists. The head daughter has a gap specified as case:nom on its subj list. A simplified version
of the macro describing a phrase of type extracted subj phrase fin is shown in figure 5.11.

Since adjuncts do not appear on any arg s list, adjunct “extraction” must be handled
differently than those cases involving arguments. Phrases of type extracted adj int phrase are
a subtype of head only phrase, so the HFP applies, but are not head-valence phrases. Thus,
a slash value may be specified on the mother which is not present on the daughter. That
slash value has a mod value consistent in a variety of respects (head, valence, etc.) with
the daughter. The daughter must have an empty subj list. A simplified version of the macro
describing a phrase of type extracted adj int phrase is shown in figure 5.12.

5.3 Coordination

The treatment of coordination in merge deserves special attention, since it helps to explain
some unexpected aspects of the grammar elsewhere, and it requires significant complexity in
the signature to support this treatment.

The general idea is that coordinate phrases are binary non-headed structures, and the
right daughter is always a (so-called) head-marker phrase. However, the marker (a conjunc-
tion in this case) is the head of a head-marker phrase in merge.

The licensing of coordinate structures depends on the structure-sharing of certain feature

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 112

extracted_subj_phrase_fin(Dtr) macro
extracted_subj_phrase_fin,
(synsem:local:cat:(head:vform:fin,

val:(spr:e_list,
subj:e_list,
comps:e_list),

mc:minus),
head_dtr:(Dtr,

synsem:(local:cat:val:(subj:hd:(gap,
local:(Local,

cat:head:case:nom)),
comps:o_list),

nonlocal:slash:hd:Local))).

Figure 5.11: Macro for a schema licensing subject extraction

extracted_adj_int_phrase(Dtr) macro
extracted_adj_int_phrase,
(synsem:(local:cat:(head:mod:(hd:local:cat:head:noun,

tl:e_list),
val:(subj:Subj,

spr:Spr,
comps:e_list)),

nonlocal:slash:hd:cat:(head:mod:(hd:cat:(head:Head,
val:Val),

tl:e_list),
val:(subj:prolist,

comps:o_list,
spr:o_list))),

head_dtr:synsem:local:cat:(head:(Head,
verb),

val:(Val,
subj:Subj,
spr:Spr,
comps:o_list))).

Figure 5.12: Macro for the schema licensing adjunct extraction

CHAPTER 5. PHENOMENA AND HOW THEY ARE LICENSED 113

values between the sisters. Thus, the values of those features must be unifiable. The coordi-
nation of unlikes (in some sense or another) depends on the inclusion of special coordination-
subtypes in the type hierarchy.

5.3.1 Coordination of nouns and NPs

The person-number agreement specifications of a coordinated phrase depend on the conjunc-
tion. Phrases conjoined by and have plural agreement, regardless of what the conjuncts are
(since the result of conjunction with and is always plural). Agreement features of a phrase
conjoined by or are determined by the right conjunct.

(55) a. She and I sleep.
b. * She and I sleeps.
c. She or I sleeps.
d. * She or I sleep.

More complex coordinate structures can be built up by means of the mid-level coordina-
tion rule, and the conj feature, as shown by the examples in (56).

(56) a. chiang and devito
b. browne chiang and devito
c. either browne or devito
d. browne or devito
e. either browne and devito or chiang

The right daughter in a top-level coordinate phrase must be specified as conj:complex conj.
Mid-level coordinate phrases are specified as conj:phr conj, and head-marker phrases inherit
the conj:lex conj value from the marker daughter (the conjunction). Both phr conj and
lex conj are subtypes of complex conj. Since the right daughter of a mid-level coordination
phrase must also have the specification conj:complex conj, nested mid-level coordination
phrases must eventually bottom out with a head-marker phrase: a conjunction followed by a
noun or NP. Furthermore, either daughter in a coordinate phrase may itself be a coordinate
phrase.

Finally, the value of the conj feature is also used to regulate the co-occurrence of the
conjunction pairs either/or, neither/nor, and both/and. Special lexical entries for or, nor,
and either specify within their conj value that the left conjunct should be marked by a
particular conjunction. The top-level coordination rule specifies that this information is
structure-shared with the conj value of the left conjunct.

The treatment of coordination relying on unification of various feature values results in
some limitations which should be pointed out. For example, since both conjuncts structure-
share the divisible feature, it is not possible in this treatment of coordination to conjoin a
plural or mass noun with a singular count noun. (This holds for ERG, also.)

Bibliography

Bouma, Gosse, Rob Malouf and Ivan A. Sag (2001). Satisfying Constraints on Extraction
and Adjunction. Natural Language and Linguistic Theory 19(1), 1–65.

Briscoe, Ted, Claire Grover, Bran Boguraev and John Carroll (1987). A formalism and
environment for the development of a large grammar of English. In Proceedings of IJCAI-
87 . Milan.

Carpenter, Bob and Gerald Penn (1996). Compiling Typed Attribute-Value Logic Grammars.
In Harry Bunt and Masaru Tomita (eds.), Recent Advances in Parsing Technologies , Dor-
drecht: Kluwer, pp. 145–168.

Copestake, Ann (2002). Implementing Typed Feature Structure Grammars. Stanford, CA:
CSLI Publications.

Copestake, Ann and Dan Flickinger (2000). An open source grammar development envi-
ronment and broad-coverage English grammar using HPSG. In Proceedings of the Second
International Conference on Language Resources and Evaluation (LREC-00), Athens.

Flickinger, Dan (2000). On building a more efficient grammar by exploiting types. Natural
Language Engineering 6(1), 15–28.

Flickinger, Dan, Ann Copestake and Ivan A. Sag (2000). HPSG Analysis of English. In
Wolfgang Wahlster (ed.), Verbmobil: Foundations of Speech-to-Speech Translation, Berlin:
Springer, Artificial Intelligence, pp. 254–263.

Meurers, W. Detmar and Kordula De Kuthy (2001). Case Assignment in Partially Fronted
Constituents. In Christian Rohrer, Antje Roßdeutscher and Hans Kamp (eds.), Linguistic
Form and its Computation, Stanford, CA: CSLI Publications, pp. 29–63.

Meurers, W. Detmar, Gerald Penn and Frank Richter (2002). A Web-based Instructional
Platform for Constraint-Based Grammar Formalisms and Parsing. In Effective Tools and
Methodologies for Teaching NLP and CL. Proceedings of the Workshop held at 40th Annual
Meeting of the ACL. Philadelphia, PA.

Meurers, Walt Detmar (1994). On Implementing an HPSG Theory – Aspects of the Logical
Architecture, the Formalization, and the Implementation of Head-Driven Phrase Structure
Grammars. In Erhard W. Hinrichs, Walt Detmar Meurers and Tsuneko Nakazawa (eds.),
Partial-VP and Split-NP Topicalization in German – An HPSG Analysis and its Imple-
mentation, Tübingen: Universität Tübingen, no. 58 in Arbeitspapiere des SFB 340, pp.
47–155. http://ling.osu.edu/~dm/on-implementing.html.

Naur, Peter and Brian Randell (eds.) (1968). Software Engineering: Report on a conference
sponsored by the NATO Science Committee, Garmisch-Partenkirchen, Germany, 7–11 Oct.
1968 . Brussels: Science Affairs Division, Nato.

114

http://ling.osu.edu/~dm/on-implementing.html

BIBLIOGRAPHY 115

Parnas, David Lorge (1975). Software Engineering or Methods for the Multi-Person Con-
struction of Multi-Version Programs. In Clemens Hackl (ed.), Programming Methodology,
4th Informatik Symposium, IBM Germany, Wildbad, September 25-27, 1974 , Springer
Verlag, Lecture Notes in Computer Science, pp. 225–235.

Pollard, Carl and Ivan A. Sag (1994). Head-Driven Phrase Structure Grammar . Chicago,
IL: University of Chicago Press and CSLI Publications.

	1 Introduction
	2 From ERG to MERGE
	2.1 Some general issues
	2.1.1 Modularity of grammatical constraints in HPSG-based grammar implementations
	2.1.1.1 Introduction
	2.1.1.2 Example 1: Unbounded dependencies
	2.1.1.3 Example 2: Optional complementation
	Capturing the missed generalization

	2.1.1.4 Summary

	2.1.2 Towards meaningful criteria for data structure and grammar design in HPSG-based implementation efforts
	2.1.2.1 Introduction
	2.1.2.2 Types and what they are used for
	2.1.2.3 Types in the English Resource Grammar
	2.1.2.4 An experiment reducing the number of types to what is empirically required
	2.1.2.5 Summary

	2.2 Notes on correspondences and differences
	2.2.1 The signature
	2.2.1.1 Basic types and appropriateness conditions
	2.2.1.2 Lexical types
	2.2.1.3 Phrasal types
	2.2.1.4 Lists

	2.2.2 The theory
	2.2.2.1 The lexicon
	2.2.2.2 The phrase structure rules
	2.2.2.3 The lexical rules
	2.2.2.4 The principles

	3 Coverage of the grammar
	3.1 Basic declarative sentences
	3.2 Interrogative sentences
	3.3 Imperative sentences
	3.4 Noun phrases
	3.4.1 Pronouns
	3.4.2 Head-Specifier constructions
	3.4.3 Modification
	3.4.4 Other kinds of noun phrases

	4 Description of the components of the grammar
	4.1 The Signature
	4.1.1 Signs
	4.1.2 Synsem objects
	4.1.3 Local objects
	4.1.4 Cat objects
	4.1.5 The content
	4.1.6 Head objects
	4.1.7 Lists

	4.2 Phrase Structure Rules
	4.2.1 Phrasal types and phrase structure rules
	4.2.2 General phrasal macros
	4.2.3 Head-subject rule
	4.2.4 Head-complement rule
	4.2.5 Optional complement rules
	4.2.5.1 Head-optional-complement rule
	4.2.5.2 Noun-optional-complement rule

	4.2.6 Head-marker rules
	4.2.6.1 Nominal head-marker rule

	4.2.7 Head-specifier rule
	4.2.8 Modification
	Adjunct-head phrases
	Intersective adjunct-head phrases
	Head-adjunct phrases

	4.2.8.1 Intersective adjunct-noun rule
	4.2.8.2 Noun-adjunct rules
	Reduced relative noun-adjunct rules
	Nontemporal reduced relative noun-adjunct rule
	Temporal reduced relative noun-adjunct rule

	Relative clause noun-adjunct rule

	4.2.9 Filler-head rules
	4.2.9.1 Filler-head relative rule

	4.2.10 Non-wh-relative rules
	4.2.11 Extracted argument rules
	4.2.11.1 Extracted complement rule
	4.2.11.2 Extracted subject rules

	4.2.12 Extracted adjunct rules
	4.2.13 Coordination rules
	Event coordination rules
	Nominal coordination rules

	4.2.14 Special NP rules
	4.2.14.1 Specifier-less noun phrases
	Proper noun phrase rule
	Bare noun phrase rule
	Bare verbal gerund phrase rule

	4.2.14.2 Compound noun phrases
	Noun-noun compound rule
	NP-noun compound rule
	NP-name compound rule

	4.2.14.3 Temporal modifier rule
	4.2.14.4 Measure NP rule
	4.2.14.5 Free relative rules
	Infinitive free relative rule
	Finite free relative rule

	4.3 Lexical Entries
	4.3.1 Common nouns
	Intransitive nouns (@n_intr_le)
	Nouns taking PP complements (@n_ppcomp_le)
	Plural nouns taking PP complements (@n_plur_ppcomp_le)
	Nouns taking PP[of] complements (@n_ppof_le)
	Nouns taking CP complements (@n_cpcomp_fin_le)
	Mass nouns (@n_mass_le)

	4.3.2 Time and date expressions
	Hour nouns (@n_hour_le)
	Temporal PP-complement nouns (@n_temp_ppcomp_le)
	Definite partitive day (@n_def_day_part_le)
	Day of week nouns (@n_day_of_week_le)
	Day of month nouns (@n_day_of_month_le)
	Cardinal day of month nouns (@n_day_of_month_card_le)
	Month nouns (@n_month_le)
	Month-year nouns (@n_month_year_le)
	Year nouns (@n_year_le)

	4.3.3 Proper nouns (@n_proper_le)
	4.3.4 Partitive nouns
	PP[of] no-agreement partitives (@n_part_ppof_noagr_le)
	PP[of] agreement partitives (@n_part_ppof_agr_le)
	NP-complement agreement partitives (@n_part_npcomp_agr_le)
	No-complement partitive nouns (@n_part_nocomp_le)

	4.3.5 Pronouns
	Personal pronouns (@n_pers_pro_le)
	Singular they (@n_pers_pro_noagr_le)
	Expletive pronouns
	Expletive it (@n_expl_it_le)
	Expletive there (@n_expl_there_le)

	Possessive pronouns (@n_poss_pro_le)
	Deictic pronouns (@n_deictic_pro_le)
	Generic pronouns (@n_generic_pro_le)
	Reflexive pronouns (@n_refl_pro_le)
	Wh-pronouns (@n_wh_pro_le)
	Free relative pronouns (@n_freerel_pro_le)
	Relative pronouns (@n_rel_pro_le)
	Non-wh relative pronoun that (@n_rel_pro_nonwh_le)

	4.3.6 Adverbial nouns
	there (@n_adv_le)
	Adverbial wh-nouns (@n_wh_adv_le)
	Adverbial free relative pronouns (@n_freerel_pro_adv_le)

	4.3.7 Determiners (@basic_det_synsem)
	Non-partitive determiners
	(Ordinary) determiners (@det_le)
	Singular mass determiners (@det_sm_le)
	Singular determiners (@det_sg_le)
	Singular no-modifier determiners (@det_sg_nomod_le)
	Plural determiners (@det_pl_le)
	Possessive determiners (@det_poss_le)

	Partitive determiners
	(Ordinary) partitive determiners (@det_part_le)
	Singular partitive determiners (@det_part_sg_le)
	Plural partitive determiners (@det_part_pl_le)
	Plural-mass partitive determiners (@det_part_pl_mass_le)
	The determiner one (@det_part_one_le)

	Wh-determiners
	The determiner what (@det_wh_le)
	The determiner which (@det_part_unsp_le)
	The determiner how_many (@det_part_pl_wh_le_many)
	The determiner whichever (@n_freerel_part_le)
	The free-relative determiner what (@det_freerel_le)
	The possessive relative determiner whose (@det_rel_poss_le)

	4.3.8 Prepositions
	Regular prepositions (@p_reg_le)
	(Ordinary) prepositions (@p_le)
	No-specifier prepositions (@p_nospec_le)
	No-specifier no-gap prepositions (@p_nospec_nogap_le)
	Idiomatic no-modifier prepositions (@p_idiom_nomod_le)
	Comparative than (@p_compar_than_le)
	Temporal prepositions (@p_temp_le)
	The preposition a (@p_nbar_comp_nmod_le)
	No-noun modifying prepositions (@p_no_n_mod_le)
	Subordinating conjunctions (@p_subconj_le)
	Predicative subordinating conjunctions
	Infinitive subordinating conjunctions (@p_subconj_inf_le)
	Indicative if (@p_subconj_if_indic_le)
	CP-complement prepositions (@p_cp_le)
	PrdP-complement prepositions (@p_prdp_le)
	Phrasal prepositions
	Ordinary phrasal prepositions (@pp_le)
	Relative prepositions (@pp_rel_le)

	Wh-prepositions (@pp_wh_le)

	4.3.9 Adjectives (@basic_adj_synsem_lex_or_phrase)
	4.3.9.1 Modifying adjectives
	Intransitive adjectives (@adj_intrans_le)
	Comparative adjectives (@adj_comp_le)
	Superlative adjectives (@adj_superl_le)
	The adjectives more and less (@adj_more_less_le)
	The adjectives most and least (@adj_most_least_le)
	Ordinal adjectives (@adj_bare_unspecified_ord_le)
	Cardinal adjectives (@adj_bare_unspecified_card_le)

	4.3.9.2 Non-modifying adjectives
	CP[that] adjectives (@adj_reg_atrans_that_cp_le)
	Wh-adjectives (@adj_wh_le)

	4.3.10 Degree specifiers (@adv_degree_spec_le)
	Titles (@n_title_le)
	Post titles (@n_post_title_le)

	4.3.11 Conjunctions (@conj_word)
	Complex conjunctions (@conj_complex_le)
	Atomic conjunctions (@conj_atomic_le)

	4.4 Lexical Rules
	4.4.1 Inflectional Lexical Rules
	Singular nouns
	Mass nouns
	Plural nouns

	4.4.2 Derivational lexical rules
	4.4.2.1 Partitive lexical rules
	part_nocomp_constr
	part_ppof_agr_constr
	part_ppof_noagr_constr
	partitive_num

	4.4.2.2 month_det
	4.4.2.3 dofm_yofc

	4.5 General Principles
	4.5.1 The Head Feature Principle
	4.5.2 Slash Amalgamation
	4.5.3 Nonlocal Feature Inheritance

	5 Phenomena and how they are licensed
	5.1 The nominal domain
	5.1.1 Simple noun phrases
	5.1.2 Prenominal modification
	5.1.3 Degree specifiers of determiners, adjectives, and other specifiers
	5.1.4 Possessives
	5.1.5 Special kinds of noun phrases
	5.1.5.1 Pronominal expressions
	Referring pronominals
	Expletives

	5.1.5.2 Names
	5.1.5.3 Date expressions
	5.1.5.4 Temporal modifying NPs
	5.1.5.5 Partitive constructions
	5.1.5.6 Compound nouns
	5.1.5.7 Free relatives

	5.1.6 Comparative and superlative expressions
	5.1.6.1 Prenominal modifiers
	5.1.6.2 Predicative adjective phrases
	5.1.6.3 Comparative NPs

	5.1.7 Postnominal modification
	Example structures
	Licensing postnominal modification
	Modification by a reduced relative
	Modification by a relative clause

	5.2 The verbal domain
	5.2.1 Complementation
	5.2.1.1 Optional Complements

	5.2.2 Modification
	5.2.2.1 Relative Clauses
	Relative pronouns and pied-piping

	5.2.3 Extraction

	5.3 Coordination
	5.3.1 Coordination of nouns and NPs

